首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid onset of resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) limits its clinical utility in colorectal cancer (CRC) patients, and pan-erb-b2 receptor tyrosine kinase (ErbB) treatment strategy may be the alternative solution. The aim of this study was to develop a possible microRNA multi-ErbB treatment strategy to overcome EGFR-TKI resistance. We detect the receptor tyrosine kinase activity in gefitinib-resistant colorectal cancer cells, ErbB3/EGFR is significantly activated and provides a potential multi-ErbB treatment target. MiR-323a-3p, a tumor suppressor, could target both ErbB3 and EGFR directly. Apoptosis is the miR-323a-3p inducing main biological process by functional enrichment analysis, and The EGFR and ErbB signaling are the miR-323a-3p inducing main pathway by KEGG analysis. MiR-323a-3p promotes CRC cells apoptosis by targeting ErbB3-phosphoinositide 3‐kinases (PI3K)/PKB protein kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/EGFR-extracellular regulated MAP kinase (Erk1/2) signaling directly. And miR-323a-3p, as a multi-ErbBs inhibitor, increase gefitinib sensitivity of the primary cell culture from combination miR-323a-3p and gefitinib treated subcutaneous tumors. MiR-323a-3p reverses ErbB3/EGFR signaling activation in gefitinib-resistant CRC cell lines and blocks acquired gefitinib resistance.Subject terms: Colorectal cancer, Cancer therapeutic resistance  相似文献   

2.
Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05). The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05). miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.  相似文献   

3.
B Feng  TT Dong  LL Wang  HM Zhou  HC Zhao  F Dong  MH Zheng 《PloS one》2012,7(8):e43452
MicroRNAs have been implicated in the regulation of several cellular signaling pathways of colorectal cancer (CRC) cells. Although emerging evidence proves that microRNA (miR)-106a is expressed highly in primary tumor and stool samples of CRC patients; whether or not miR-106a mediates cancer metastasis is unknown. We show here that miR-106a is highly expressed in metastatic CRC cells, and regulates cancer cell migration and invasion positively in vitro and in vivo. These phenotypes do not involve confounding influences on cancer cell proliferation. MiR-106a inhibits the expression of transforming growth factor-β receptor 2 (TGFBR2), leading to increased CRC cell migration and invasion. Importantly, miR-106a expression levels in primary CRCs are correlated with clinical cancer progression. These observations indicate that miR-106a inhibits the anti-metastatic target directly and results in CRC cell migration and invasion.  相似文献   

4.
Lung cancer, predominantly non-small cell lung cancer (NSCLC), remains the leading cause of cancer-related deaths worldwide. Although epidermal growth factor receptor (EGFR) signaling is important and well studied with respect to NSCLC progression, little is known about how miRNAs mediate EGFR signaling to modulate tumorigenesis. To identify miRNAs that target EGFR, we performed a bioinformatics analysis and found that miR-542-5p down-regulates EGFR mRNA and protein expression in human lung cancer cells (H3255, A549, Hcc827). We observed increases in EGFR association with Ago2 in miR-542-5p-transfected cells. Interestingly, we observed an inverse correlation of miR-542-5p expression and EGFR protein levels in human lung cancer tissue samples, suggesting that miR-542-5p directly targets EGFR mRNA. Furthermore, we found that miR-542-5p inhibited the growth of human lung cancer cells. Our findings suggest that miR-542-5p may act as an important modulator of EGFR-mediated oncogenesis, with potential applications as a novel therapeutic target in lung cancer.  相似文献   

5.
6.
Elevated expression and activity of the epidermal growth factor receptor (EGFR)/protein kinase B (Akt) signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC). Several studies have demonstrated that microRNA-7 (miR-7) regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3′-untranslated region (3′-UTR). In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5) that were sensitive to the EGFR tyrosine kinase inhibitor (TKI) erlotinib (Tarceva). miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.  相似文献   

7.
8.
9.
Gastric cancer (GC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Accumulating evidence reported that microRNA (miR)-133a was involved in GC. This study aimed to investigate the function and mechanism of miR-133a in the development and progression of GC. The expression of miR-133a and presenilin 1 (PSEN1) in two GC cell lines, SGC-7901 and BGC-823, were inhibited and overexpressed by transient transfections. Thereafter, cell viability, migration, and apoptosis were measured by trypan blue exclusion assay, transwell migration assay, and flow cytometry assay, respectively. Dual-luciferase reporter assay was conducted to verify whether PSEN1 was a direct target of miR-133a. Furthermore, quantitative real-time polymerase chain reaction and Western blot analysis were mainly performed to assess the expression changes of epithelial-mesenchymal transition (EMT)-associated proteins, apoptosis-related proteins, and Notch pathway proteins. MiR-133a inhibitor significantly increased cell viability and migration, while miR-133a mimic decreased cell viability, migration, and induced apoptosis. miR-133a suppression accelerated transforming growth factor-β1 (TGF-β1)-induce EMT, as evidenced by upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Slug. Of contrast, miR-133a overexpression blocked TGF-β1-induce EMT by altering these factors. PSEN1 was a direct target of miR-133a, and suppression of PSEN1 abolished the promoting functions of miR-133 suppression on cell growth and metastasis. Moreover, PSEN1 inhibition decreased Notch 1, Notch 2, and Notch 3 protein expressions. This study demonstrates an antigrowth and antimetastasis role of miR-133a in GC cells. Additionally, miR-133a acts as a tumor suppressor may be via targeting PSEN1.  相似文献   

10.
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.  相似文献   

11.
Non–small cell lung cancer (NSCLC) is the main type of lung malignancy. Early diagnosis and treatments for NSCLC are far from satisfactory due to the limited knowledge of the molecular mechanisms regarding NSCLC progression. Long noncoding RNA (lncRNA) ZNFX1 antisense RNA1 (ZFAS1) has been implicated for its functional role in the progression of malignant tumors. This study aimed to determine the ZFAS1 expression from lung cancer clinical samples and to explore the molecular mechanisms underlying ZFAS1-modulated NSCLC progression. Experimental assays revealed that clinical samples and cell lines of lung malignant tumors showed an upregulation of ZFSA1. ZFAS1 expression was markedly upregulated in the lung tissues from patients with advanced stage of this malignancy. The loss-of-function assays showed that knockdown of ZFAS1-suppressed NSCLC cell proliferative, as well as invasive potentials, increased NSCLC cell apoptotic rates in vitro and also attenuated tumor growth of NSCLC cells in the nude mice. Further experimental evidence showed that ZFAS1 inversely affected miR-150-5p expression and positively affected high-mobility group AT-hook 2 (HMGA2) expression in NSCLC cell lines. MiR-150-5p inhibition or HMGA2 overexpression counteracted the effects of ZFAS1 knockdown on NSCLC cell proliferative, invasive potentials and apoptotic rates. In light of examining the clinical lung cancer samples, miR-150-5p expression was downregulated and the HMGA2 expression was highly expressed in the lung cancer tissues compared with normal ones; the ZFAS1 expression showed a negative correlation with miR-150-5p expression but a positive correlation with HMGA2 expression in lung cancer tissues. To summarize, we, for the first time, demonstrated the inhibitory effects of ZFAS1 knockdown on NSCLC cell progression, and the results from mechanistic studies indicated that ZFAS1-mediated NSCLC progression cells via targeting miR-150-5p/HMGA2 signaling.  相似文献   

12.
Recently, microRNAs have emerged as regulators of cancer metastasis through acting on multiple signaling pathways involved in metastasis. In this study, we have analyzed the level of miR-10b and cell motility and invasiveness in several human esophageal squamous cell carcinoma cell lines. Our results reveal a significant correlation of miR-10b level with cell motility and invasiveness. Overexpression of miR-10b in KYSE140 cells increased cell motility and invasiveness, whereas inhibition of miR-10b in EC9706 cells reduced cell invasiveness, although it did not alter cell motility. Additionally, we identified KLF4, a known tumor suppressor gene that has been reported to suppress esophageal cancer cell migration and invasion, as a direct target of miR-10b. Furthermore, overexpression of miR-10b in KYSE140 and KYSE450 cells led to a reduction of endogenous KLF4 protein, whereas silencing of miR-10b in EC9706 cells caused up-regulation of KLF4 protein. Coexpression of miR-10b and KLF4 in KYSE140 cells and coexpression of small interfering RNA for KLF4 mRNA and miR-10b-AS in EC9706 cells partially abrogated the effect of miR-10b on cell migration and invasion. Finally, analyses of the miR-10b level in 40 human esophageal cancer samples and their paired normal adjacent tissues revealed an elevated expression of miR-10b in 95% (38 of 40) of cancer tissues, although no significant correlation of the miR-10b level with clinical metastasis status was observed in these samples.  相似文献   

13.
Increasing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNAs, participate in almost every step of cellular processes. MiRNAs are aberrantly expressed in human cancers and contribute to cancer development and progression. Study of miRNAs may provide a new clue for understanding the mechanism of carcinogenesis and a new tool for cancer treatment. In the present study, miR-153 was downregulated in human osteosarcoma tissues and cell lines. Introduction of miR-153 mimics into the MG-63 cells inhibited cell proliferation and invasion. Our results further revealed that transforming growth factor beta 2 (TGF-β2) was negatively regulated by miR-153. Furthermore, overexpression of miR-153 decreased p-SMAD2, p-SMAD3, epidermal growth factor receptor (EGFR) and insulin-like growth factor binding protein-3 (IGFBP-3) expressions, which were the downstream signaling molecules of TGF-β. Furthermore, miRNA-153 suppressed TGF-β-mediated MG-63 proliferation and migration. Therefore, our results suggest that miR-153 may act as a tumor suppressor in osteosarcoma through targeting TGF-β2.  相似文献   

14.
Recently, miR-22 was found to be differentially expressed in different skeletal muscle growth period, indicated that it might have function in skeletal muscle myogenesis. In this study, we found that the expression of miR-22 was the most in skeletal muscle and was gradually up-regulated during mouse myoblast cell (C2C12 myoblast cell line) differentiation. Overexpression of miR-22 repressed C2C12 myoblast proliferation and promoted myoblast differentiation into myotubes, whereas inhibition of miR-22 showed the opposite results. During myogenesis, we predicted and verified transforming growth factor beta receptor 1 (TGFBR1), a key receptor of the TGF-β/Smad signaling pathway, was a target gene of miR-22. Then, we found miR-22 could regulate the expression of TGFBR1 and down-regulate the Smad3 signaling pathway. Knockdown of TGFBR1 by siRNA suppressed the proliferation of C2C12 cells but induced its differentiation. Conversely, overexpression of TGFBR1 significantly promoted proliferation but inhibited differentiation of the myoblast. Additionally, when C2C12 cells were treated with different concentrations of transforming growth factor beta 1 (TGF-β1), the level of miR-22 in C2C12 cells was reduced. The TGFBR1 protein level was significantly elevated in C2C12 cells treated with TGF-β1. Moreover, miR-22 was able to inhibit TGF-β1-induced TGFBR1 expression in C2C12 cells. Altogether, we demonstrated that TGF-β1 inhibited miR-22 expression in C2C12 cells and miR-22 regulated C2C12 cell myogenesis by targeting TGFBR1.  相似文献   

15.
Lung cancer represents the leading cause of cancer-related deaths in men and women worldwide. Targeted therapeutics, including the epidermal growth factor receptor (EGFR) inhibitor erlotinib, have recently emerged as clinical alternatives for the treatment of non-small cell lung cancer (NSCLC). However, the development of therapeutic resistance is a major challenge, resulting in low 5-year survival rates. Due to their ability to act as tumor suppressors, microRNAs (miRNAs) are attractive candidates as adjuvant therapeutics for the treatment of NSCLC. In this study, we examine the ability of 2 tumor suppressor miRNAs, let-7b and miR-34a to sensitize KRAS;TP53 mutant non-small cell lung cancer cells to the action of erlotinib. Treatment with these miRNAs, individually or in combination, resulted in synergistic potentiation of the anti-proliferative effects of erlotinib. This effect was observed over a wide range of miRNA and erlotinib interactions, suggesting that let-7b and miR-34a target oncogenic pathways beyond those inhibited by EGFR. Combinatorial treatment with let-7b and miR-34a resulted in the strongest synergy with erlotinib, indicating that these miRNAs can effectively target multiple cellular pathways involved in cancer cell proliferation and resistance to erlotinib. Together, our findings indicate that NSCLC cells can be effectively sensitized to erlotinib by supplementation with tumor suppressor miRNAs, and suggest that the use of combinations of miRNAs as adjuvant therapeutics for the treatment of lung cancer is a viable clinical strategy.  相似文献   

16.
17.
MicroRNA-200a (miR-200a) has been reported to regulate tumour progression in several tumours; however, little is known about its role in non-small cell lung cancer cells (NSCLCs). Here, we found that miR-200a was up-regulated in A549 and SK-MES-1 cells compared with normal lung cells HELF. By a series of gain-of-function and loss-of-function studies, over-expression of miR-200a was indicated to enhance cells migration, and its knock-down inhibited migration of cells in NSCLC cell lines. Furthermore, miR-200a was identified to induce TSPAN1 expression which was related to migration. TSPAN1 was proved to induce migration, and so up-regulation of TSPAN1 by miR-200a may explain why over-expressing miR-200a promotes NSCLC cells migration.  相似文献   

18.
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.  相似文献   

19.
《MABS-AUSTIN》2013,5(3):273-288
The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.  相似文献   

20.
Lung carcinoma tops the categories of cancer related motility, and has been treated as the main threat to human health. The functions and related mechanism of FBXW7 controlled lung cancer stem cells' signatures is barely unknown, and the miR-367 regulations of FBXW7 via Wnt signaling have not been explored. Cancer stem cells of either ALDH1+ or CD133+ phenotype were found to be referred to advanced stages in patients with NSCLC (non-small cell lung carcinoma). To study the roles of miR-367, we found greater miR-367 level or FBXW7 level was reserved in NSCLC than that of paired adjacent normal tissues, and their upregulations were positively correlated with Wnt signaling activation. On the contrary, increased miR-367 was correlated with Let-7 repression. MiR-367 was related to stronger sphere forming ability in stem cells of NSCLC. We then explored the functions of the endogenous miR-367 in stem-like cells isolated from NSCLC cell lines. In HEK-293 cells, we identified FBXW7 as the direct downstream gene of miR-367, which consequently released the LIN-28 dependent inhibition of suppressive Let-7. Through informatics analysis, miR-367 was predicated to function through Wnt signaling, and decreased Let-7 played the pivotal role to maintain TCF-4/Wnt pathway activity. The reintroduction of FBXW7 abolished the oncogenic stimulation of miR-367 on TCF-4 activity, with Wnt signaling factors depression. In conclusion, our findings demonstrated the oncogenic roles of miR-367 exerting on the self-renewal ability of cancer stem-like cells through degrading the suppressive FBXW7, eventually helping to maintain Wnt signaling activation through a LIN28B/Let-7 dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号