首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Import of nuclear-encoded mitochondrial preproteins is mediated by a general translocase in the outer membrane, the TOM complex, and by two distinct translocases in the mitochondrial inner membrane, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the TOM complex but facilitate import of different classes of precursor proteins. Precursors with an N-terminal presequence are imported via the TIM23 complex, whereas mitochondrial carrier proteins require the TIM22 complex for insertion into the inner membrane. This review discusses recent advances in understanding the structure and function of the translocases of the inner membrane and the possible role of Tim proteins in the development of the Mohr-Tranebjaerg syndrome, a mitochondrial disorder leading to neurodegeneration.  相似文献   

2.
Mitochondrial protein translocation is an intricately regulated process that requires dedicated translocases at the outer and inner membranes. The presequence translocase complex, translocase of the inner membrane 23, facilitates most of the import of preproteins containing presequences into the mitochondria, and its primary structural organization is highly conserved. As part of the translocase motor, two J-proteins, DnaJC15 and DnaJC19, are recruited to form two independent translocation machineries (translocase A and translocase B, respectively). On the other hand, the J-like protein subunit of translocase of the inner membrane 23, Mitochondria-associated granulocyte-macrophage colony-stimulating factor signaling molecule (Magmas) (orthologous to the yeast subunit Pam16), can regulate human import-motor activity by forming a heterodimer with DnaJC19 and DnaJC15. However, the precise coordinated regulation of two human import motors by a single Magmas protein is poorly understood. Here, we report two additional Magmas variants (Magmas-1 and Magmas-2) constitutively expressed in the mammalian system. Both the Magmas variants are functional orthologs of Pam16 with an evolutionarily conserved J-like domain critical for cell survival. Moreover, the Magmas variants are peripherally associated with the inner membrane as part of the human import motor for translocation. Our results demonstrate that Magmas-1 is predominantly recruited to translocase B, whereas Magmas-2 is majorly associated with translocase A. Strikingly, both the variants exhibit differential J-protein inhibitory activity in modulating import motor, thereby regulating overall translocase function. Based on our findings, we hypothesize that additional Magmas variants are of evolutionary significance in humans to maximize protein import in familial-linked pathological conditions.  相似文献   

3.
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.  相似文献   

4.
The presequence translocase of the inner mitochondrial membrane (TIM23 complex) operates at a central junction of protein import. It accepts preproteins from the outer membrane TOM complex and directs them to inner membrane insertion or, in cooperation with the presequence translocase-associated motor (PAM), to the matrix. Little is known of how the TIM23 complex coordinates these tasks. We have identified Tim21 (YGR033c) that interacts with the TOM complex. Tim21 is specific for a TIM23 form that cooperates with TOM and promotes inner membrane insertion. Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase. Tim17 is crucial for the switch by performing two separable functions: promotion of inner membrane insertion and binding of Pam18 to form the functional TIM-PAM complex. Thus, the presequence translocase is not a static complex but switches between TOM tethering and PAM binding in a reaction cycle involving Tim21 and Tim17.  相似文献   

5.
Preproteins with N-terminal presequences are imported into mitochondria at translocation contact sites that include the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Little is known about the functional cooperation of these translocases. We have characterized translocation contact sites by a productive TOM-TIM-preprotein supercomplex to address the role of three translocase subunits that expose domains to the intermembrane space (IMS). The IMS domain of the receptor Tom22 is required for stabilization of the translocation contact site supercomplex. Surprisingly, the N-terminal segment of the channel Tim23, which tethers the TIM23 complex to the outer membrane, is dispensable for both protein import and generation of the TOM-TIM supercomplex. Tim50, with its large IMS domain, is crucial for generation but not for stabilization of the supercomplex. Thus, Tim50 functions as a dynamic factor and the IMS domain of Tom22 represents a stabilizing element in formation of a productive translocation contact site supercomplex.  相似文献   

6.
The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.  相似文献   

7.
The mitochondrial inner membrane harbors complexes of the respiratory chain and translocase complexes for preproteins. The membrane potential generated by the respiratory chain is essential for ATP production by the mitochondrial ATP synthase and as a driving force for protein import. It is generally believed that the preprotein translocases just use the membrane potential without getting into physical contact with respiratory-chain complexes. Here, we show that the presequence translocase interacts with the respiratory chain. Tim21, a specific subunit of the sorting-active presequence translocase , recruits proton-pumping respiratory-chain complexes and stimulates preprotein insertion. Thus, the presequence translocase cooperates with the respiratory chain and promotes membrane-potential-dependent protein sorting into the inner mitochondrial membrane. These findings suggest a new coupling mechanism in an energy-transducing membrane.  相似文献   

8.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

9.
Tim23, a key component of the mitochondrial preprotein translocase, is anchored in the inner membrane by its C-terminal domain and exposes an intermediate domain in the intermembrane space that functions as a presequence receptor. We show that the N-terminal domain of Tim23 is exposed on the surface of the outer membrane. The two-membrane-spanning topology of Tim23 is a novel characteristic in membrane biology. By the simultaneous integration into two membranes, Tim23 forms contacts between the outer and inner mitochondrial membranes. Tethering the inner membrane translocase to the outer membrane facilitates the transfer of precursor proteins from the TOM complex to the TIM23 complex and increases the efficiency of protein import.  相似文献   

10.
Many mitochondrial proteins are synthesized with N-terminal presequences in the cytosol. The presequence translocase of the inner mitochondrial membrane (TIM23) translocates preproteins into and across the membrane and associates with the matrix-localized import motor. The TIM23 complex consists of three core components and Tim21, which interacts with the translocase of the outer membrane (TOM) and the respiratory chain. We have identified a new subunit of the TIM23 complex, the inner membrane protein Mgr2. Mitochondria lacking Mgr2 were deficient in the Tim21-containing sorting form of the TIM23 complex. Mgr2 was required for binding of Tim21 to TIM23(CORE), revealing a binding chain of TIM23(CORE)-Mgr2/Tim21-respiratory chain. Mgr2-deficient yeast cells were defective in growth at elevated temperature, and the mitochondria were impaired in TOM-TIM23 coupling and the import of presequence-carrying preproteins. We conclude that Mgr2 is a coupling factor of the presequence translocase crucial for cell growth at elevated temperature and for efficient protein import.  相似文献   

11.
The mitochondrial presequence translocase interacts with presequence‐containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix‐targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim‐proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal‐sensitive manner in a process that involves the IMS‐domain of the Tim23 channel. The signal‐driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor‐associated form of the TIM23 complex required for matrix transport.  相似文献   

12.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

13.
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase.  相似文献   

14.
Role of Tim21 in mitochondrial translocation contact sites   总被引:9,自引:0,他引:9  
Translocation of preproteins with N-terminal presequences into mitochondria requires the cooperation of the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). However, the molecular nature of the translocation contact sites is poorly understood. We have identified a novel component of the TIM23 translocase, Tim21, which is involved in their formation. Tim21 is anchored in the mitochondrial inner membrane by a single transmembrane domain and exposes its C-terminal domain into the intermembrane space. The purified C-terminal domain of Tim21 appears not to bind to any of the TIM23 components but rather specifically interacts with the TOM complex. We propose that Tim21 binds to the trans site of the TOM complex thus keeping the two translocases in close contact.  相似文献   

15.
Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N‐terminal, soluble domain in the intermembrane space (IMS) and a C‐terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N‐terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge‐hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network.  相似文献   

16.
Proteins imported into the mitochondrial matrix are synthesized in the cytosol with an N-terminal presequence and are translocated through hetero-oligomeric translocase complexes of the outer and inner mitochondrial membranes. The channel across the inner membrane is formed by the presequence translocase, which consists of roughly six distinct subunits; however, it is not known which subunits actually form the channel. Here we report that purified Tim23 forms a hydrophilic, approximately 13-24 A wide channel characteristic of the mitochondrial presequence translocase. The Tim23 channel is cation selective and activated by a membrane potential and presequences. The channel is formed by the C-terminal domain of Tim23 alone, whereas the N-terminal domain is required for selectivity and a high-affinity presequence interaction. Thus, Tim23 forms a voltage-sensitive high-conductance channel with specificity for mitochondrial presequences.  相似文献   

17.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

18.
Tim23 mediates protein translocation into mitochondria. Although inserted into the inner membrane, the dynamic association of its intermembrane space (IMS) domain with the outer membrane promotes protein import. However, little is known about the molecular basis of this interaction. Here, we demonstrate that the IMS domain of Tim23 tightly associates with both inner and outer mitochondrial membrane-like membranes through a hydrophobic anchor at its N terminus. The structure of membrane-bound Tim23IMS is highly dynamic, allowing recognition of both the incoming presequence and other translocase components at the translocation contact. Cardiolipin enhances Tim23 membrane attachment, suggesting that cardiolipin can influence preprotein import.  相似文献   

19.
N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner.  相似文献   

20.
Mitochondrial import of cleavable preproteins occurs at translocation contact sites, where the translocase of the outer membrane (TOM) associates with the presequence translocase of the inner membrane (TIM23) in a supercomplex. Different views exist on the mechanism of how TIM23 mediates preprotein sorting to either the matrix or inner membrane. On the one hand, two TIM23 forms were proposed, a matrix transport form containing the presequence translocase-associated motor (PAM; TIM23-PAM) and a sorting form containing Tim21 (TIM23SORT). On the other hand, it was reported that TIM23 and PAM are permanently associated in a single-entity translocase. We have accumulated distinct transport intermediates of preproteins to analyze the translocases in their active, preprotein-carrying state. We identified two different forms of active TOM-TIM23 supercomplexes, TOM-TIM23SORT and TOM-TIM23-PAM. These two supercomplexes do not represent separate pathways but are in dynamic exchange during preprotein translocation and sorting. Depending on the signals of the preproteins, switches between the different forms of supercomplex and TIM23 are required for the completion of preprotein import.The majority of mitochondrial proteins are nuclear encoded and posttranslationally transported into the organelle. A major class of mitochondrial proteins possess cleavable targeting signals at their amino termini, so-called presequences (5, 9, 12, 19, 30, 32). These α-helical segments are positively charged and direct the proteins across the outer and inner mitochondrial membranes toward the matrix space, where the presequences are proteolytically removed. However, a number of proteins of the inner mitochondrial membrane, among them subunits of the respiratory chain complexes, also utilize presequences as targeting signals. In addition to the presequence, they contain a hydrophobic sorting signal, which arrests precursor translocation across the inner membrane and mediates the lateral release of the polypeptide into the lipid phase (16, 30). In some cases, the membrane-inserted precursors undergo a second processing event by the inner membrane protease that cleaves behind the sorting signal and therefore leads to the release of the protein into the intermembrane space (25, 30, 31). Thus, a large variety of proteins destined for three different intramitochondrial compartments use presequences as the primary signal for transport.Cleavable preproteins initially enter mitochondria via the TOM complex and are translocated into or across the inner membrane by the TIM23 complex. The TIM23 complex consists of four integral membrane proteins, Tim23, Tim17, Tim50, and Tim21. Tim23 forms the protein-conducting channel of the translocase and is tightly associated with Tim17 (8, 26, 43). Tim50 acts as a regulator for the Tim23 channel and is involved in early steps of precursor transfer from the outer to the inner membranes (23, 29, 41). Tim21 transiently interacts with the TOM complex via binding to the intermembrane space domain of Tom22. This interaction promotes the release of presequences from Tom22 for their further transfer to the Tim23 channel (4). For full matrix translocation of preproteins, the TIM23 complex cooperates with PAM. The central subunit of PAM is mtHsp70, which undergoes ATP-dependent cycles of preprotein binding and release to promote polypeptide movement toward the matrix. The activity of mtHsp70 in the translocation process is regulated by four membrane-bound cochaperones, Tim44, the J complex Pam18/Pam16 (Tim14/Tim16), and Pam17. Tim44 provides a binding site for preproteins and mtHsp70 close to the Tim23 channel (1, 17, 22, 36). The J protein Pam18 stimulates the ATPase activity of mtHsp70 (10, 44), whereas the J-related protein Pam16 controls the activity of Pam18 (11, 13, 20). Pam17 plays an organizing role in the TIM23-PAM cooperation (33, 45).The following two different views on the organization of the presequence transport machinery are currently discussed. (i) The TIM23 complex and PAM were proposed to exist in different modular states, termed TIM23SORT and TIM23-PAM. The TIM23CORE complex, consisting of Tim23, Tim17 and Tim50, associates with either Tim21 or the subunits of PAM (4, 47, 51). The Tim21-containing form is termed TIM23SORT since this motor-free form was isolated and shown to mediate membrane insertion of sorted preproteins upon reconstitution (46). The TIM23-PAM form (lacking Tim21) is crucial for mtHsp70-driven preprotein translocation into the matrix (4). (ii) On the other hand, it was proposed that presequence translocase and import motor form a single structural and functional entity. Thus, membrane-integrated TIM23 and import motor would always remain in one complex. This model implies that a motor-free form of the TIM23 complex should not exist (27, 33, 42).To decide between the different views, it is necessary to analyze translocase and motor in their active form, i.e., during their engagement with preproteins. Moreover, the model of modular forms of TIM23 and PAM raises the question whether two strictly separate TIM23 pathways for inner membrane sorting and matrix translocation exist or whether an exchange between the different forms of the presequence translocase occurs. To date, the majority of experimental studies have been performed with the translocases in an inactive, i.e., preprotein-free, state. Studies using preproteins in transit provided only limited information so far and thus did not resolve the controversy, as follows. (i) Mokranjac and Neupert (27) questioned if the in vitro preprotein insertion by purified TIM23SORT in a proteoliposome assay (46) reflected the in organello situation in intact mitochondria. (ii) Popov-Celeketic et al. (33) accumulated a matrix-targeted preprotein in mitochondrial import sites in vivo and performed pulldown experiments. They copurified TIM23, PAM, and Tim21 and thus concluded that the TIM23 and motor subunits formed a single entity. They did not address the possibility that the accumulated preprotein was associated with different pools of translocase complexes. (iii) Wiedemann et al. (51) made use of the observation that TIM23SORT associates with the respiratory chain (47). They reported a copurification of inner membrane-sorted preproteins and matrix-targeted preproteins with respiratory chain complexes. This observation raised the possibility that the pathways for inner membrane sorting and matrix translocation are connected at least at the level of respiratory chain interaction; however, the composition of the TIM23 complexes was not analyzed.For this study, we used preproteins with variations in the intramitochondrial sorting signal to monitor the active, preprotein-carrying translocases at distinct stages of mitochondrial import. We observed different forms of active translocases on the presequence pathway. The sorting signals of the preproteins are critical for the selection of specific translocase forms. The motor and sorting forms of the TIM23 complex can be isolated as separate entities in support of the modular model. However, the different TIM23 forms are not permanently separated during preprotein import, but a dynamic exchange between the forms takes place for both matrix-targeted preproteins and inner membrane-sorted preproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号