首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The herpes simplex virus (HSV) ICP0 protein acts to overcome intrinsic cellular defenses that repress viral α gene expression. In that vein, viruses that have mutations in ICP0''s RING finger or are deleted for the gene are sensitive to interferon, as they fail to direct degradation of promyelocytic leukemia protein (PML), a component of host nuclear domain 10s. While varicella-zoster virus is also insensitive to interferon, ORF61p, its ICP0 ortholog, failed to degrade PML. A recombinant virus with each coding region of the gene for ICP0 replaced with sequences encoding ORF61p was constructed. This virus was compared to an ICP0 deletion mutant and wild-type HSV. The recombinant degraded only Sp100 and not PML and grew to higher titers than its ICP0 null parental virus, but it was sensitive to interferon, like the virus from which it was derived. This analysis permitted us to compare the activities of ICP0 and ORF61p in identical backgrounds and revealed distinct biologic roles for these proteins.Alphaherpesviruses encode orthologs of the herpes simplex virus (HSV) α gene product ICP0. ICP0 is a nuclear phosphoprotein that behaves as a promiscuous activator of viral and cellular genes (7, 11, 28, 29). ICP0 also functions as an E3 ubiquitin ligase to target several host proteins for proteasomal degradation (4, 10, 11, 16, 26). Through this activity, ICP0 promotes degradation of components of nuclear domain 10 (ND10) bodies, including the promyelocytic leukemia protein (PML) and Sp100. These proteins are implicated in silencing of herpesvirus genomes (9, 10, 22, 34). Therefore, ICP0-mediated degradation of ND10 components may disrupt silencing of HSV genes to enable efficient gene expression. This hypothesis provides a plausible mechanistic explanation of how ICP0 induces gene activation.Introduction of DNA encoding the ICP0 orthologs from HSV, bovine herpesvirus, equine herpesvirus, and varicella-zoster virus (VZV) can also affect nuclear structures and proteins (27). In addition, and more specific to this report, ORF61p, the VZV ortholog, activates viral promoters and enhances infectivity of viral DNA like ICP0, the prototype for this gene family (24, 25). However, we have previously demonstrated two key biological differences between the HSV and VZV orthologs. We first showed that unlike ICP0, ORF61p is unable to complement depletion of BAG3, a host cochaperone protein. As a result, VZV is affected by silencing of BAG3 (15), whereas growth of HSV is altered only when ICP0 is not expressed (17). Furthermore, we have shown that while both proteins target components of ND10s, expression of ICP0 results in degradation of both PML and Sp100, whereas ORF61p specifically reduces Sp100 levels (16). These findings suggest that these proteins have evolved separately to provide different functions for virus replication.Virus mutants lacking the ICP0 gene have an increased particle-to-PFU ratio, a substantially lower yield, and decreased levels of α gene expression, in a multiplicity-of-infection (MOI)- and cell-type-dependent manner (2, 4, 8, 33). These mutants are also defective at degrading ND10 components (23). Depletion of PML and Sp100 accelerates virus gene expression and increases plaquing efficiency of HSV ICP0-defective viruses but has no effect on wild-type virus, suggesting that PML and Sp100 are components of an intrinsic anti-HSV defense mechanism that is counteracted by ICP0''s E3 ligase activity (9, 10). Interestingly, ICP0 null viruses are also hypersensitive to interferon (IFN) (26), a property that was suggested to be mediated via PML (3).To directly compare the activities of the two orthologs, we constructed an HSV mutant virus that expresses ORF61p in place of ICP0. The resulting chimeric virus only partially rescues the ICP0 null phenotype. Our studies emphasize the biological differences between ICP0 and ORF61p and shed light on the requirements for PML and Sp100 during infection.  相似文献   

4.
Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 is required for efficient lytic infection and productive reactivation from latency and induces derepression of quiescent viral genomes. Despite being unrelated at the sequence level, ICP0 and human cytomegalovirus proteins IE1 and pp71 share some functional similarities in their abilities to counteract antiviral restriction mediated by components of cellular nuclear structures known as ND10. To investigate the extent to which IE1 and pp71 might substitute for ICP0, cell lines were developed that express either IE1 or pp71, or both together, in an inducible manner. We found that pp71 dissociated the hDaxx-ATRX complex and inhibited accumulation of these proteins at sites juxtaposed to HSV-1 genomes but had no effect on the promyelocytic leukemia protein (PML) or Sp100. IE1 caused loss of the small ubiquitin-like modifier (SUMO)-conjugated forms of PML and Sp100 and inhibited the recruitment of these proteins to HSV-1 genome foci but had little effect on hDaxx or ATRX in these assays. Both IE1 and pp71 stimulated ICP0-null mutant plaque formation, but neither to the extent achieved by ICP0. The combination of IE1 and pp71, however, inhibited recruitment of all ND10 proteins to viral genome foci, stimulated ICP0-null mutant HSV-1 plaque formation to near wild-type levels, and efficiently induced derepression of quiescent HSV-1 genomes. These results suggest that ND10-related intrinsic resistance results from the additive effects of several ND10 components and that the effects of IE1 and pp71 on subsets of these components combine to mirror the overall activities of ICP0.  相似文献   

5.
6.
7.
8.
Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell protein 22 (ICP22), in the nucleus by observing the localization of ICP22-EGFP fusion protein. Results showed that, in high-level expression conditions, ICP22-EGFP gradually concentrates in the nucleus, persists throughout the cell cycle without disaggregation even in the cell division phase, and i...  相似文献   

9.
10.
11.
12.
13.
The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1). As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs), namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR). The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated) and CAD (CENP-A Distal) complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase) digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs), we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR.  相似文献   

14.
15.
16.
17.
As one of the immediate-early(IE)proteins of herpes simplex virus type 1(HSV-1),ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells.It is required in experimental animal systems and some nonhuman cell lines,but not in Vero or HEp-2 cells.ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase Ⅱ.It has been shown to be required for efficient expression of early(E)genes and a subset of late(L)genes.ICP22,in conjunction wit...  相似文献   

18.
19.
Infection of cells by herpes simplex virus type 1 (HSV-1) triggers host cell shutoff whereby mRNAs are degraded and cellular protein synthesis is diminished. However, virus protein translation continues because the translational apparatus in HSV-infected cells is maintained in an active state. Surprisingly, poly(A)-binding protein 1 (PABP1), a predominantly cytoplasmic protein that is required for efficient translation initiation, is partially relocated to the nucleus during HSV-1 infection. This relocalization occurred in a time-dependent manner with respect to virus infection. Since HSV-1 infection causes cell stress, we examined other cell stress inducers and found that oxidative stress similarly relocated PABP1. An examination of stress-induced kinases revealed similarities in HSV-1 infection and oxidative stress activation of JNK and p38 mitogen-activated protein (MAP) kinases. Importantly, PABP relocalization in infection was found to be independent of the viral protein ICP27. The depletion of PABP1 by small interfering RNA (siRNA) knockdown had no significant effect on viral replication or the expression of selected virus late proteins, suggesting that reduced levels of cytoplasmic PABP1 are tolerated during infection.The lytic replication cycle of herpes simplex virus type 1 (HSV-1) can be divided into three phases, immediate-early (IE), early (E), and late (L), that occur in a coordinated sequential gene expression program. IE proteins can regulate E and L gene expression, which produces proteins involved in DNA replication, capsid production, and virion assembly. HSV infection results in host cell shutoff to facilitate the efficient production of viral proteins. First, mRNA is degraded by the virion-associated vhs protein, and then ICP27, a multifunctional regulator of gene expression, inhibits pre-mRNA splicing. As most viral mRNAs are intronless, this abrogates the production of stable cellular mRNAs that can be exported to the cytoplasm and compete for translation with viral mRNAs (44).HSV mRNAs are capped and polyadenylated and so are translated via a normal cap-dependent mechanism. Translation initiation, during which translationally active ribosomes are assembled, is a tightly regulated process (21). Eukaryotic initiation factor 4F (eIF4F) (composed of eIF4E, eIF4G, and eIF4A) that binds the cap at the 5′ end of the mRNA promotes the recruitment of the 40S ribosomal subunit and associated factors, including eIF2-GTP initiator tRNA. The recognition of the start codon then promotes large ribosomal subunit joining. Poly(A)-binding protein 1 (PABP1), which binds and multimerizes on mRNA poly(A) tails, enhances translation initiation through interactions with the eIF4G component of the eIF4F cap-binding complex (20, 29, 32, 51) to circularize the mRNA in a “closed-loop” conformation (24). Key protein-RNA and protein-protein interactions in the translation initiation complex are strengthened by this PABP1-mediated circularization (12).HSV-1 maintains active viral translation in the face of host translational shutoff. Infection activates protein kinase R (PKR), which phosphorylates eIF2α, resulting in translation inhibition. However, HSV-1 ICP34.5 redirects protein phosphatase 1α to reverse eIF2α phosphorylation, abrogating the block to translation (17, 38). In addition, the HSV-1 US11 protein inhibits PKR and may also block PKR-mediated eIF2α phosphorylation (40, 42). HSV-1 infection also enhances eIF4F assembly in quiescent cells by the phosphorylation and proteasome-mediated degradation of the eIF4E-binding protein (4E-BP), which, when hypophosphorylated, can negatively regulate eIF4F complex formation (54). However, ICP6 may also contribute to eIF4F assembly by binding to eIF4G (55). Finally, ICP6 is required for Mnk-1 phosphorylation of eIF4E, but the mechanisms behind this remain unclear (54). ICP27 has also been implicated in translation regulation during HSV infection (6, 8, 10, 30) and may also activate p38 mitogen-activated protein (MAP) kinase that can phosphorylate eIF4E (16, 59).PABP1 appears to be a common cellular target of RNA and DNA viruses. PABP1 can undergo proteolysis, intracellular relocalization, or modification of its interaction with other translation factors in response to infection. For example, poliovirus induces host cell shutoff by cleaving PABP1, thus disrupting certain PABP1-containing complexes (28, 29). The rotavirus NSP3 protein can displace PABP1 from translation initiation complexes (41). However, NSP3 also interacts with a cellular protein, RoXaN, which is required to relocate PABP1 to the nucleus (13). Similarly, the Kaposi''s sarcoma herpesvirus (KSHV) SOX protein plays a role in relocating PABP1, its cofactor in cellular mRNA decay, to the nucleus (33). Although steady-state levels of PABP1 are highest in the cytoplasm of normal cells, where it has cytoplasmic functions, it is a nucleocytoplasmic shuttling protein (1). However, it is unclear how PABP1 enters or exits the nucleus, as it contains neither a canonical nuclear export nor an import signal.Here we describe the loss of PABP1 from cap-binding complexes and the partial relocation of PABP1 to the nucleus in HSV-1-infected cells in a time-dependent manner. Relocation is specific for PABP1, as other translation factors remained in the cytoplasm. Cells undergo stress during HSV-1 infection, and analysis of a variety of cell stresses revealed that PABP relocalization was also observed upon oxidative stress. Paxillin, a potential PABP1 nuclear chaperone, was phosphorylated, and the paxillin-PABP1 interaction was reduced during virus infection. However, the interaction was weak and cell type dependent, indicating that other effectors of PABP1 relocation in the infected cell must exist. Recently, the HSV-1 ICP27 protein was suggested to alter the PABP1 cellular location (6). However, infections with ICP27-null mutant viruses clearly demonstrated that ICP27 is not required for PABP1 nuclear relocation in the context of infection. Although HSV-1 mRNAs are translated by a normal cap-dependent mechanism known to be enhanced by PABP1, small interfering RNA (siRNA) knockdown of PABP1 indicated that at late times of infection, the translation of certain virus late proteins tolerates very low levels of PABP1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号