首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects.

Methodology/Principal Findings

In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping.

Conclusions/Significance

In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated.

Trial Registration

ClinicalTrials.gov NCT01034423  相似文献   

2.
The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has ∼10–20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.  相似文献   

3.
4.
Journal of Evolutionary Biochemistry and Physiology - Inflammation and oxidative stress are well known to induce the biogenesis of lipid droplets (LDs) in various cell types, in which fatty acids...  相似文献   

5.
Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs.  相似文献   

6.

Background

The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited.

Results

In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20) of bladder tumors and 35% (7/20) of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05). Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon) in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression.

Conclusions

The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.  相似文献   

7.
Olanzapine is known to be advantageous with respect to outcome and drug compliance in patients with schizophrenia. However, olanzapine has adverse effects, including a higher incidence of weight gain and metabolic disturbances, when compared with those of other antipsychotic agents. The mechanisms underlying these adverse events remain obscure. Female rats were orally administered olanzapine (2 mg/kg) or vehicle once a day for 2 weeks to ascertain if hypothalamic AMP-activated protein kinase (AMPK) mediates olanzapine-induced weight gain and hyperphagia. Body weight and food intake in each rat were evaluated every day and every two days, respectively. After the termination of drug treatment, we measured the protein levels of AMPK and phosphorylated AMPK in the hypothalamus using western blot analyses. Olanzapine significantly increased body weight and food intake. The phosphorylation levels of AMPK were significantly elevated by olanzapine. These results suggest that activation of hypothalamic AMPK may mediate hyperphagia and weight gain induced by chronic treatment with olanzapine.  相似文献   

8.

Background

Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known.

Methodology/Principal Findings

Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including members of the extracellular matrix and apelin pathway, was modified in juvenile OF mice. In adult mice, OF led to an increase in body weight (+30%) and to significant increases in plasma cholesterol, insulin and leptin levels. Myocardial oxidative stress, SOD and catalase activity and mRNA expression were increased in OF mice. In vivo, diastolic and systolic blood pressures were significantly higher and LV shortening and ejection fraction were decreased in OF mice. Ex vivo, after 30 min of ischemia, hearts isolated from OF mice showed lower functional recovery and larger infarct size (31% vs. 54%, p<0.05). Increases in collagen deposition and expression/activity of matrix-metalloproteinase-2 were observed in adult OF mouse hearts. Moreover, an increase in the expression of SOCS-3 and a decrease in STAT-3 phosphorylation were observed in ventricular tissues from OF mice.

Conclusions/Significance

Our study emphasizes that over-nutrition during the immediate postnatal period in mice leads to early changes in cardiac gene expression, which may permanently modify the heart’s structural organization and metabolism and could contribute to a greater susceptibility to myocardial ischemia-reperfusion injury.  相似文献   

9.
Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal.  相似文献   

10.
The complex process of phloem sugar transport involves symplasmic and apoplasmic events. We characterized Arabidopsis thaliana lines ectopically expressing a phloem-specific gene encoding NDR1/HIN1-like26 (NHL26), a putative membrane protein. NHL26 overexpressor plants grew more slowly than wild-type plants, accumulated high levels of carbohydrates in mature leaves, and had a higher shoot biomass, contrasting with slower root growth and a lower seed yield. Similar effects were observed when NHL26 was overexpressed in companion cells, under the control of a companion cell–specific promoter. The soluble sugar content of the phloem sap and sink organs was lower than that in the wild type, providing evidence of a sugar export defect. This was confirmed in a phloem-export assay with the symplastic tracer carboxyfluorescein diacetate. Leaf sugar accumulation was accompanied by higher organic acid, amino acid, and protein contents, whereas analysis of the metabolite profile of phloem sap exudate revealed no change in amino acid or organic acid content, indicating a specific effect on sugar export. NHL26 was found to be located in the phloem plasmodesmata and the endoplasmic reticulum. These findings reveal that NHL26 accumulation affects either the permeability of plasmodesmata or sugar signaling in companion cells, with a specific effect on sugar export.  相似文献   

11.
12.
Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires) and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs) experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion). The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have important implications for both managed and natural grassland ecosystems.  相似文献   

13.
Hypermethioninemic patients exhibit a variable degree of neurological dysfunction. However, the mechanisms involved in these alterations have not been completely clarified. Cholinergic system has been implicated in many physiological processes, including cognitive performances, as learning, and memory. Parameters of cholinergic signaling have already been characterized in zebrafish brain. Since zebrafish is a small freshwater teleost which is a vertebrate model for modeling behavioral and functional parameters related to human pathogenesis and for clinical treatment screenings, in the present study we investigated the effects of short- and long-term methionine exposure on cognitive impairment, AChE activity and gene expression in zebrafish. For the studies, animals were exposed at two methionine concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). We observed a significant increase in AChE activity of zebrafish brain membranes after long-term methionine exposure at 3.0 mM. However, AChE gene expression decreased significantly in both concentrations tested after 7 days of treatment, suggesting that post-translational events are involved in the enhancement of AChE activity. Methionine treatment induces memory deficit in zebrafish after long-term exposure to this amino acid, which could be related, at least in part, with cognitive impairment observed in hypermethioninemia. Therefore, the results here presented raise a new perspective to use the zebrafish as a complementary vertebrate model for studying inborn errors of metabolism, which may help to better understand the pathophysiology of this disease.  相似文献   

14.
低温、高温、干旱等非生物胁迫是影响水稻产量与品质的重要非生物逆境因子.为了探索水稻耐逆的分子机理并挖掘新的水稻耐逆基因,采用Affymetrix 60K水稻基因表达芯片分析了培矮64S全基因组在上述逆境下的表达谱变化,筛选出一个受低温诱导表达水平显著升高的基因OsCR1( Oryza sativaL.cold resp...  相似文献   

15.
16.
Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system. The overlapping enzymatic activities in the PON family members and high linkage disequilibrium rates within their polymorphisms confound animal and human studies of PON1 function. In contrast, arthropods such as Drosophila melanogaster have no PON homologs, resulting in an ideal model to study interactions between PON genotype and host phenotypes. We hypothesized that expression of PON1 in D. melanogaster would alter ROS. We found that PON1 alters expression of multiple oxidative stress genes and decreases superoxide anion levels in normal and germ-free D. melanogaster. We also found differences in the composition of the gut microbiota, with a remarkable increase in levels of Lactobacillus plantarum and associated changes in expression of antimicrobial and cuticle-related genes. PON1 expression directly decreased superoxide anion levels and altered bacterial colonization of the gut and its gene expression profile, highlighting the complex nature of the interaction between host genotype and gut microbiota. We speculate that the interaction between some genotypes and human diseases may be mediated by the presence of certain gut bacteria that can induce specific immune responses in the gut and other host tissues.  相似文献   

17.
Li  Jie  Xing  Hongxia  Jiang  Guohui  Su  Zhou  Wu  Yuqing  Zhang  Yi  Guo  Shuangxi 《Neurochemical research》2016,41(4):836-843

The mechanisms of epilepsy remain incompletely understood. Rac1 (ras-related C3 botulinum toxin substrate 1) belongs to the Rho family of small GTPases. Rac1 play important roles in cytoskeleton rearrangement and neuronal synaptic plasticity, which had also been implicated in epilepsy. However, little is known regarding the expression of Rac1 in the epileptic brain or whether Rac1-targeted interventions affect the progression of epilepsy. The aim of this study was to investigate the expression profile of Rac1 in brain tissues from patients suffering from temporal lobe epilepsy (TLE) and experimental epileptic rats and determine the possible role of Rac1 in epilepsy. We demonstrated that the expression of Rac1 is significantly increased in TLE patients and in lithium-pilocarpine epilepsy model animals compared to the corresponding controls. Rac1 inhibitor NSC23766 reduced the severity of status epilepticus during the acute stage in a lithium-pilocarpine animal model. Consistent with these results, the latent period of a PTZ kindling animal model also increased. Our results demonstrated that the increased expression of Rac1 may contribute to pathophysiology of epilepsy.

  相似文献   

18.
19.
20.
《生命科学研究》2016,(2):153-157
O-岩藻糖肽3-β-N-乙酰氨基葡萄糖转移酶(Lunatic Fringe,LFNG)与Notch信号作用密切相关,且LFNG在不同组织细胞中对Notch信号所起的作用不同。为了探讨LFNG在急性B细胞白血病中的表达及对Notch信号的作用,应用real-time PCR和Western-blot在核酸水平及蛋白质水平上检测了LFNG在人急性B淋巴细胞白血病细胞系BALL-1、人正常B淋巴母细胞系HMy2.CIR及正常B细胞中的表达状况,并应用si RNA技术分析了LFNG基因沉默后对白血病BALL-1细胞中Notch信号通路的影响。结果显示:白血病细胞系BALL-1存在LFNG蛋白过度表达,且LFNG基因沉默后抑制白血病B细胞的Notch信号通路。上述结果提示LFNG在白血病B细胞中的异常表达能促进Notch信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号