首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
2.
de Freitas TR 《Genetica》2006,126(1-2):227-235
This report is a review of 20 years of cytogenetics studies in tuco-tucos from the south of Brazil and the implications for the evolution of these species as well as the relation of these data with the geological history of the Coastal Plain of southern Brazil. Two forms of Ctenomys torquatus, 2n = 44 and 46, are separated by a geographic barrier. Ctenomys flamarioni shows a constant karyotype (2n = 48) and presents high variability in FN due to constitutive heterochromatin variation. Ctenomys minutus presents the highest chromosomic variation among the species in the south of Brazil (2n = 42–50) with three chromosomic hybrid zones. Ctenomys lami, like C. minutus, presents a high chromosomic variation due to fusions and fissions of chromosome pairs 1 and 2. Both species present a close evolutionary relationship, including a chromosomic hybrid zone.  相似文献   

3.
Ecological niche models (ENM) have become a popular tool to define and predict the “ecological niche” of a species. An implicit assumption of the ENMs is that the predicted ecological niche of a species actually reflects the adaptive landscape of the species. Thus in sites predicted to be highly suitable, species would have maximum fitness compared to in sites predicted to be poorly suitable. As yet there are very few attempts to address this assumption. Here we evaluate this assumption. We used Bioclim (DIVA GIS version 7.3) and Maxent (version 3.3.2) to predict the habitat suitability of Myristica malabarica Lam., an economically important tree occurring in the Western Ghats, India. We located populations of the trees naturally occurring in different habitat suitability regimes (from highly suitable to poorly suitable) and evaluated them for their regeneration ability and genetic diversity. We also evaluated them for two plant functional traits, fluctuating asymmetry – an index of genetic homeostasis, and specific leaf weight – an index of primary productivity, often assumed to be good surrogates of fitness. We show a significant positive correlation between the predicted habitat quality and plant functional traits, regeneration index and genetic diversity of populations. Populations at sites predicted to be highly suitable had a higher regeneration and gene diversity compared to populations in sites predicted to be poor or unsuitable. Further, individuals in the highly suitable sites exhibited significantly less fluctuating asymmetry and significantly higher specific leaf weight compared to individuals in the poorly suitable habitats. These results for the first time provide an explicit test of the ENM with respect to the plant functional traits, regeneration ability and genetic diversity of populations along a habitat suitability gradient. We discuss the implication of these resultsfor designing viable species conservation and restoration programs.  相似文献   

4.
Identifying factors and the extent of their roles in the differentiation of populations is of great importance for understanding the evolutionary process in which a species is involved. Ctenomys minutus is a highly karyotype–polymorphic subterranean rodent, with diploid numbers ranging from 42 to 50 and autosomal arm numbers (ANs) ranging from 68 to 80, comprising a total of 45 karyotypes described so far. This species inhabits the southern Brazilian coastal plain, which has a complex geological history, with several potential geographical barriers acting on different time scales. We assessed the geographical genetic structure of C. minutus, examining 340 individuals over the entire distributional range and using information from chromosomal rearrangements, mitochondrial DNA (mtDNA) sequences and 14 microsatellite loci. The mtDNA results revealed seven main haplogroups, with the most recent common ancestors dating from the Pleistocene, whereas clustering methods defined 12 populations. Some boundaries of mtDNA haplogroups and population clusters can be associated with potential geographical barriers to gene flow. The isolation-by-distance pattern also has an important role in fine-scale genetic differentiation, which is strengthened by the narrowness of the coastal plain and by common features of subterranean rodents (that is, small fragmented populations and low dispersal rates), which limit gene flow among populations. A step-by-step mechanism of chromosomal evolution can be suggested for this species, mainly associated with the metapopulation structure, genetic drift and the geographical features of the southern Brazilian coastal plain. However, chromosomal variations have no or very little role in the diversification of C. minutus populations.  相似文献   

5.
Subterranean rodents of the genus Ctenomys usually present an allopatric or parapatric distribution. Currently, two cases of sympatry have been recognized for the genus in the coastal dunes of southern Argentina and southern Brazil. In this context, they are ideal models to test hypotheses about the factors that delimit the patterns of space use and to understand interspecific interactions in small mammals. We investigated the vegetation structure, plant biomass and soil hardness selected by two species of subterranean rodents (Ctenomys flamarioni and C. minutus) when distributed in sympatry and allopatry from nine different areas along the line of coastal dunes in southern Brazil. In addition, our work presents a new record of a third area of sympatry for the genus Ctenomys. Ctenomys flamarioni and C. minutus show habitat segregation in the area where they occur in sympatry. These species show segregation in their selection of microhabitats, differing in relation to soil hardness, plant biomass, and plant cover. Ctenomys flamarioni showed a distinction in habitat selection when occurring in allopatry and sympatry, whereas C. minutus selected the same habitat characteristics under both conditions. A possible explanation to the observed pattern is that these species have acquired different adaptations over time which allows them the ability to exploit different resources and thus avoid competitive interactions all together.  相似文献   

6.
In this first application of the approximate Bayesian computation approach using the serial coalescent, we demonstrated the estimation of historical demographic parameters from ancient DNA. We estimated the timing and severity of a population bottleneck in an endemic subterranean rodent, Ctenomys sociabilis, over the last 10,000 y from two cave sites in northern Patagonia, Argentina. Understanding population bottlenecks is important in both conservation and evolutionary biology. Conservation implications include the maintenance of genetic variation, inbreeding, fixation of mildly deleterious alleles, and loss of adaptive potential. Evolutionary processes are impacted because of the influence of small populations in founder effects and speciation. We found a decrease from a female effective population size of 95,231 to less than 300 females at 2,890 y before present: a 99.7% decline. Our study demonstrates the persistence of a species depauperate in genetic diversity for at least 2,000 y and has implications for modes of speciation in the incredibly diverse rodent genus Ctenomys. Our approach shows promise for determining demographic parameters for other species with ancient and historic samples and demonstrates the power of such an approach using ancient DNA.  相似文献   

7.
Fragmentation and habitat loss pose major threats to global biodiversity. Especially forest dwelling species with small ranges and high habitat specialisation are affected by ongoing land use change. Building projects for infrastructural purposes, expanding settlements, and extensive agricultural areas are assumed to have a high impact on these species. The European Habitat’s Directive aims to conserve and restore habitat networks to lower these impacts. We propose that the idea of securing habitat networks for protected species should be incorporated within large scale landscape planning e.g. by modelling and improving corridors for umbrella species. Within a Danish-German project we developed a model demonstrating potential connecting corridors for Muscardinus avellanarius, a specialised forest dwelling rodent species with low dispersal ability. We used presence data and eco-geographical variables to find a data based time-efficient procedure which may be applied also in other species for future landscape planning. The habitat suitability model shows that the hazel dormouse occupies a narrow niche with highly suitable habitats comprising edge habitats. It indicates the preference of forest patches, linear structures and networks of the mentioned habitats. Along with connectivity the diversity of suitable habitats diversity is the major factor predicting hazel dormouse presence. For conservation management, we calculated habitat corridors and highlight sections with missing connections. This allowed us to accentuate regions of high management interest. The results represent the foundation not only for this cross-border conservation project, but also for long-term dormouse conservation on a federal-state level.  相似文献   

8.
Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents.  相似文献   

9.
We analyzed the effects of tuco-tucos (Ctenomys minutus, Ctenomyidae) on plant cover, plant biomass, soil hardness, soil pH, and variables related to nutrient disposition (P, K, Mg, and Ca), using data from three areas in the South Brazilian coastal plain. In each area, samples were taken from sites with and without C. minutus and results are presented in a concatenate way. Our results show that the presence of C. minutus modifies total plant biomass, grass cover, bare soil, soil hardness, soil pH, and nutrient content. Soils horizons at the depths of 10 and 20 cm are significantly softer in sites with C. minutus and phosphorus and potassium had higher concentrations. The content of magnesium and calcium were not affected. Soil pH was significantly lower where tuco-tucos occurred. Altogether, our results show that these animals may have a significant effect on vegetation composition and dynamics as well as on soil properties.  相似文献   

10.
We investigated the impact of past changes in habitat suitability on the current patterns of genetic diversity of two southern beeches (Nothofagus nervosa and Nothofagus obliqua) in their eastern fragmented range in Patagonian Argentina, and model likely future threats to their population genetic structure. Our goal was to develop a spatially-explicit strategy for guiding conservation and management interventions in light of climate change. We combined suitability modelling under current, past (Last Glacial Maximum ~ 21,000 bp), and future (2050s) climatic conditions with genetic characterization data based on chloroplast DNA, isozymes, and microsatellites. We show the complementary usefulness of the distribution of chloroplast haplotypes and locally common allelic richness calculated from microsatellite data for identifying the locations of putative glacial refugia. Our findings suggest that contemporary hotspots of genetic diversity correspond to convergence zones of different expansion routes, most likely as a consequence of admixture processes. Future suitability predictions suggest that climate change might differentially affect both species. All genetically most diverse populations of N. nervosa and several of N. obliqua are located in areas that may be most severely impacted by climate change, calling for forward-looking conservation interventions. We propose a practical spatially- explicit strategy to target conservation interventions distinguishing priority populations for (1) in situ conservation (hotspots of genetic diversity likely to remain suitable under climate change), (2) ex situ conservation in areas where high genetic diversity overlaps with high likelihood of drastic climate change, (3) vulnerable populations (areas expected to be negatively affected by climate change), and (4) potential expansion areas under climate change.  相似文献   

11.
《PloS one》2014,9(9)
Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.  相似文献   

12.
The coastal plains of the Rio de Janeiro State, south-eastern Brazil, have been considered an important hotspot of aplocheiloid killifish diversity. A conservation status assessment based on 17?years of field studies directed to record habitat decline indicates that five species of seasonal killifish, Leptolebias marmoratus, Nematolebias papilliferus, Notholebias cruzi, Notholebias fractifasciatus and Ophthalmolebias constanciae, distributed among three areas of endemism, are on the edge of survival. Conservation priority, focusing on five remnant isolated locations where those species occur, was evaluated on the basis of the phylogenetic diversity content of each location established through a phylogenetic base containing data on relationships of 118 cynolebiasine species, including all species endemic to Rio. Data on species diversity for each area and data on morphological uniqueness were subsequently compared and discussed. The Barra de S?o Jo?o pool, in the S?o Jo?o-Cabo Frio area, habitat of Nematolebias whitei, No. cruzi, O. constanciae, concentrates the highest value for conservation proposal, followed by the Ino? pool, in the Maricá area, habitat of Ne. papilliferus and No. fractifasciatus. However, in case of the Barra de S?o Jo?o pool being effectively preserved, it is recommended to concentrate efforts to preserve the Cava swamp as a second priority, since although the latter location showing the lowest individual value, Cava swamp and Barra de S?o Jo?o pool together sum a higher phylogenetic diversity index by preserving more distinct cynolebiasine lineages.  相似文献   

13.
It remains a challenge to identify the geographical patterns and underlying environmental associations of species with unique ecological niches and distinct behaviors. This in turn hinders our understanding of the ecology as well as effective conservation management of threatened species. The white-eared night heron (Gorsachius magnificus) is a non-migratory nocturnal bird species that has a patchy distribution in the mountainous forests of East Asia. It is currently categorized as “Endangered” on the IUCN Red List, primarily due to its restricted range and fragmented habitat. To improve our knowledge of the biogeography and conservation of this species, we modeled the geographical pattern of its suitable habitat and evaluated the potential impacts of climate change using ecological niche modeling with a maximum entropy approach implemented in Maxent. Our results indicated that the amount of suitable habitat in all of East Asia was about 130 000 km2, which can be spatially subdivided into several mountain ranges in southern and southwestern China and northern Vietnam. The extent of suitable habitat range may shrink by more than 35% under a predicted changing climate when assuming the most pessimistic condition of dispersal, while some more suitable habitat would be available if the heron could disperse unrestrainedly. The significant future changes in habitat suitability suggested for Gorsachius magnificus urge caution in any downgrading of Red List status that may be considered. Our results also discern potentially suitable areas for future survey efforts on new populations. Overall, this study demonstrates that ecological niche modeling offers an important tool for evaluating the habitat suitability and potential impacts of climate change on an enigmatic and endangered species based on limited presence data.  相似文献   

14.
Many species have already experienced distributional shifts due to changing environmental conditions, and analyzing past shifts can help us to understand the influence of environmental stressors on a species as well as to analyze the effectiveness of conservation strategies. We aimed to (1) quantify regional habitat associations of the California gnatcatcher (Polioptila californica ); (2) describe changes in environmental variables and gnatcatcher distributions through time; (3) identify environmental drivers associated with habitat suitability changes; and (4) relate habitat suitability changes through time to habitat conservation plans. Southern California's Western Riverside County (WRC ), an approximately 4,675 km2 conservation planning area. We assessed environmental correlates of distributional shifts of the federally threatened California gnatcatcher (hereafter, gnatcatcher) using partitioned Mahalanobis D 2 niche modeling for three time periods: 1980–1997, 1998–2003, and 2004–2012, corresponding to distinct periods in habitat conservation planning. Highly suitable gnatcatcher habitat was consistently warmer and drier and occurred at a lower elevation than less suitable habitat and consistently had more CSS , less agriculture, and less chaparral. However, its relationship to development changed among periods, mainly due to the rapid change in this variable. Likewise, other aspects of highly suitable habitat changed among time periods, which became cooler and higher in elevation. The gnatcatcher lost 11.7% and 40.6% of highly suitable habitat within WRC between 1980–1997 to 1998–2003, and 1998–2003 to 2004–2012, respectively. Unprotected landscapes lost relatively more suitable habitat (?64.3%) than protected landscapes (30.5%). Over the past four decades, suitable habitat loss within WRC , especially between the second and third time periods, was associated with temperature‐related factors coupled with landscape development across coastal sage scrub habitat; however, development appears to be driving change more rapidly than climate change. Our study demonstrates the importance of providing protected lands for potential suitable habitat in future scenarios.  相似文献   

15.
Assessment of occupancy status, as well as projection of suitable habitats and connectivity of wetland indicator species, and thereby identification of potential conservation umbrella and projection of conservation priority areas are often considered important for wetland conservation. Kingfishers are wetland indicators and suffer from habitat degradation due to world-wide destruction of wetlands. Therefore, they can be considered potential candidates for conservation intervention. The present knowledge about the spatial distribution of suitable areas and habitat connectivity of kingfishers at a landscape level is non-existent. We conducted extensive surveys and recorded four kingfisher species in East Kolkata Wetlands (EKW; Ramsar site No. 1208; ∼125 km2). The occupancy estimates were highest for White-throated kingfisher (Halcyon smyrnensis, WTK), followed by common kingfisher (Alcedo atthis, CK), stork-billed kingfisher (Pelargopsis capensis, SBK) and lowest for pied kingfisher (Ceryle rudis, PK). WTK has the highest amount of suitable areas followed by CK, PK and SBK. The spatial overlap of suitable habitats showed that SBK is the potential umbrella species and therefore provides conservation benefits to other kingfisher species and eventually to the EKW. In addition to water areas, emergent vegetation, crop lands and tree cover are other important habitats for kingfishers. The connectivity analyses revealed that suitable habitats were disjunct and are under various anthropogenic threats. Therefore, we need to protect suitable habitats and connectivity between them. Finally, we identified conservation priority areas. Conservation intervention on these high priority zones will not only be beneficial for kingfishers, but also for other avifauna having similar resource requirements as well as the wetland parse.  相似文献   

16.
Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate change.  相似文献   

17.
Conservation management is improved by incorporating information about the spatial distribution of population genetic diversity into planning strategies. Northern Australia is the location of some of the world’s most severe ongoing declines of endemic mammal species, yet we have little genetic information from this regional mammal assemblage to inform a genetic perspective on conservation assessment and planning. We used next-generation sequencing data from remnant populations of the threatened brush-tailed rabbit-rat (Conilurus penicillatus) to compare patterns of genomic diversity and differentiation across the landscape and investigate standardised hierarchical genomic diversity metrics to better understand brush-tailed rabbit-rat population genomic structure. We found strong population structuring, with high levels of differentiation between populations (FST = 0.21–0.78). Two distinct genomic lineages between the Tiwi Islands and mainland are also present. Prioritisation analysis showed that one population in both lineages would need to be conserved to retain at least ~80% of alleles for the species. Analysis of standardised genomic diversity metrics showed that approximately half of the total diversity occurs among lineages (δ = 0.091 from grand total γ = 0.184). We suggest that a focus on conserving remnant island populations may not be appropriate for the preservation of species-level genomic diversity and adaptive potential, as these populations represent a small component of the total diversity and a narrow subset of the environmental conditions in which the species occurs. We also highlight the importance of considering both genomic and ecological differentiation between source and receiving populations when considering translocations for conservation purposes.Subject terms: Ecological genetics, Population genetics, Conservation biology, Biogeography  相似文献   

18.
Combining genetic data with ecological niche models is an effective approach for exploring climatic and nonclimatic environmental variables affecting spatial patterns of intraspecific genetic variation. Here, we adopted this combined approach to evaluate genetic structure and ecological niche of the Indian gray mongoose (Urva edwardsii) in Iran, as the most western part of the species range. Using mtDNA, we confirmed the presence of two highly differentiated clades. Then, we incorporated ensemble of small models (ESMs) using climatic and nonclimatic variables with genetic data to assess whether genetic differentiation among clades was coupled with their ecological niche. Climate niche divergence was also examined based on a principal component analysis on climatic factors only. The relative habitat suitability values predicted by the ESMs for both clades revealed their niche separation. Between‐clade climate only niche comparison revealed that climate space occupied by clades is similar to some extent, but the niches that they utilize differ between the distribution ranges of clades. We found that in the absence of evidence for recent genetic exchanges, distribution models suggest the species occurs in different niches and that there are apparent areas of disconnection across the species range. The estimated divergence time between the two Iranian clades (4.9 Mya) coincides with the uplifting of the Zagros Mountains during the Early Pliocene. The Zagros mountain‐building event seems to have prevented the distribution of U. edwardsii populations between the western and eastern parts of the mountains as a result of vicariance events. Our findings indicated that the two U. edwardsii genetic clades in Iran can be considered as two conservation units and can be utilized to develop habitat‐specific and climate change‐integrated management strategies.  相似文献   

19.
To evaluate the conservation status of a species or population it is necessary to gain insight into its ecological requirements, reproduction, genetic population structure, and overall genetic diversity. In our study we examined the genetic diversity of Rhinopithecus brelichi by analyzing microsatellite data and compared them with already existing data derived from mitochondrial DNA, which revealed that R. brelichi exhibits the lowest mitochondrial diversity of all so far studied Rhinopithecus species. In contrast, the genetic diversity of nuclear DNA is high and comparable to other Rhinopithecus species, i.e. the examined microsatellite loci are similarly highly polymorphic as in other species of the genus. An explanation for these differences in mitochondrial and nuclear genetic diversity could be a male biased dispersal. Females most likely stay within their natal band and males migrate between bands, thus mitochondrial DNA will not be exchanged between bands but nuclear DNA via males. A Bayesian Skyline Plot based on mitochondrial DNA sequences shows a strong decrease of the female effective population size (Nef) starting about 3,500 to 4,000 years ago, which concurs with the increasing human population in the area and respective expansion of agriculture. Given that we found no indication for a loss of nuclear DNA diversity in R. brelichi it seems that this factor does not represent the most prominent conservation threat for the long-term survival of the species. Conservation efforts should therefore focus more on immediate threats such as development of tourism and habitat destruction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号