首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

There are no rigorously confirmed effective medical therapies for calcific aortic stenosis. Hypercholesterolemic Ldlr −/− Apob 100/100 mice develop calcific aortic stenosis and valvular cardiomyopathy in old age. Osteoprotegerin (OPG) modulates calcification in bone and blood vessels, but its effect on valve calcification and valve function is not known.

Objectives

To determine the impact of pharmacologic treatment with OPG upon aortic valve calcification and valve function in aortic stenosis-prone hypercholesterolemic Ldlr −/− Apob 100/100 mice.

Methods

Young Ldlr −/− Apob 100/100 mice (age 2 months) were fed a Western diet and received exogenous OPG or vehicle (N = 12 each) 3 times per week, until age 8 months. After echocardiographic evaluation of valve function, the aortic valve was evaluated histologically. Older Ldlr −/− Apob 100/100 mice were fed a Western diet beginning at age 2 months. OPG or vehicle (N = 12 each) was administered from 6 to 12 months of age, followed by echocardiographic evaluation of valve function, followed by histologic evaluation.

Results

In Young Ldlr −/− Apob 100/100 mice, OPG significantly attenuated osteogenic transformation in the aortic valve, but did not affect lipid accumulation. In Older Ldlr −/− Apob 100/100 mice, OPG attenuated accumulation of the osteoblast-specific matrix protein osteocalcin by ∼80%, and attenuated aortic valve calcification by ∼ 70%. OPG also attenuated impairment of aortic valve function.

Conclusions

OPG attenuates pro-calcific processes in the aortic valve, and protects against impairment of aortic valve function in hypercholesterolemic aortic stenosis-prone Ldlr −/− Apob 100/100 mice.  相似文献   

4.

Aim

Several recent reports have revealed that dipeptidyl peptidase (DPP)-4 inhibitors have suppressive effects on atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. It remains to be seen, however, whether this effect stems from increased levels of the two active incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP).

Methods

Nontreated Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db diabetic mice were administered the DPP-4 inhibitor vildagliptin in drinking water and co-infused with either saline, the GLP-1 receptor blocker, exendin(9–39), the GIP receptor blocker, (Pro3)GIP, or both via osmotic minipumps for 4 weeks. Aortic atherosclerosis and oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages were determined.

Results

Vildagliptin increased plasma GLP-1 and GIP levels without affecting food intake, body weight, blood pressure, or plasma lipid profile in any of the animals tested, though it reduced HbA1c in the diabetic mice. Diabetic Apoe −/− mice exhibited further-progressed atherosclerotic lesions and foam cell formation compared with nondiabetic counterparts. Nondiabetic and diabetic Apoe −/− mice showed a comparable response to vildagliptin, namely, remarkable suppression of atherosclerotic lesions with macrophage accumulation and foam cell formation in peritoneal macrophages. Exendin(9–39) or (Pro3)GIP partially attenuated the vildagliptin-induced suppression of atherosclerosis. The two blockers in combination abolished the anti-atherosclerotic effect of vildagliptin in nondiabetic mice but only partly attenuated it in diabetic mice. Vildagliptin suppressed macrophage foam cell formation in nondiabetic and diabetic mice, and this suppressive effect was abolished by infusions with exendin(9–39)+(Pro3)GIP. Incubation of DPP-4 or vildagliptin in vitro had no effect on macrophage foam cell formation.

Conclusions

Vildagliptin confers a substantial anti-atherosclerotic effect in both nondiabetic and diabetic mice, mainly via the action of the two incretins. However, the partial attenuation of atherosclerotic lesions by the dual incretin receptor antagonists in diabetic mice implies that vildagliptin confers a partial anti-atherogenic effect beyond that from the incretins.  相似文献   

5.

Background

Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs): PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2). The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet.

Methodology/Principal Findings

Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1), here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1−/−) and adipocyte-specific (PKR1ad−/−) mutant mice, and using murine and human preadipocyte cell lines. Both PKR1−/− and PKR1ad−/− had excessive abdominal adipose tissue, but only PKR1−/− mice showed severe obesity and diabetes-like syndrome. PKR1ad−/−) mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels.

Conclusions/Significance

These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.  相似文献   

6.
7.
8.

Background

The kinins (primarily bradykinin, BK) represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE), HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH). Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE). We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE.

Methods

The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK) immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC) were used to calculate the diagnostic performance of the assays.

Results

Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min−1⋅mL−1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1%) and for men (6.6 nmol·min−1⋅mL−1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%).

Conclusion

The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and –unrelated AE.  相似文献   

9.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

10.

Background

Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha’-palmitate), the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate), the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha’-palmitate fat (HAPF) diet and high beta-palmitate fat (HBPF) diet on colitis development in Muc2 deficient (Muc2−/−) mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer.

Methods

Muc2−/− mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed.

Results

Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2−/− mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg) cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1), genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis.

Conclusions

This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2−/− mice by inducing an immunosuppressive Treg cell response.  相似文献   

11.

Background

The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. However, its functions in mammals are not fully understood.

Methodology/Principal Findings

Here, we report that the Mst1-FoxO signaling pathway plays a crucial role in survival, but not apoptosis, of naïve T cells. In Mst1−/− mice, peripheral T cells showed impaired FoxO1/3 activation and decreased FoxO protein levels. Consistently, the FoxO targets, Sod2 and catalase, were significantly down-regulated in Mst1−/− T cells, thereby resulting in elevated levels of intracellular reactive oxygen species (ROS) and induction of apoptosis. Expression of constitutively active FoxO3a restored Mst1−/− T cell survival. Crossing Mst1 transgenic mice (Mst1 Tg) with Mst1−/− mice reduced ROS levels and restored normal numbers of peripheral naïve T cells in Mst1 Tg;Mst1−/− progeny. Interestingly, peripheral T cells from Mst1−/− mice were hypersensitive to γ-irradiation and paraquat-induced oxidative stresses, whereas those from Mst1 Tg mice were resistant.

Conclusions/Significance

These data support the hypothesis that tolerance to increased levels of intracellular ROS provided by the Mst1-FoxOs signaling pathway is crucial for the maintenance of naïve T cell homeostasis in the periphery.  相似文献   

12.

Background

Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is a genetic signature observed in 60% of sporadic colorectal cancers (CRCs). Unlike microsatellite unstable CRCs where hypermethylation of the DNA mismatch repair (MMR) gene hMLH1’s promoter is causal, the precise cause of EMAST is not clearly defined but points towards hMSH3 deficiency.

Aim

To examine if hMSH3 deficiency causes EMAST, and to explore mechanisms for its deficiency.

Methods

We measured −4 bp framshifts at D8S321 and D20S82 loci within EGFP-containing constructs to determine EMAST formation in MMR-proficient, hMLH1−/−, hMSH6−/−, and hMSH3−/− CRC cells. We observed the subcellular location of hMSH3 with oxidative stress.

Results

D8S321 mutations occurred 31-and 40-fold higher and D20S82 mutations occurred 82-and 49-fold higher in hMLH1−/− and hMSH3−/− cells, respectively, than in hMSH6−/− or MMR-proficient cells. hMSH3 knockdown in MMR-proficient cells caused higher D8S321 mutation rates (18.14 and 11.14×10−4 mutations/cell/generation in two independent clones) than scrambled controls (0 and 0.26×10−4 mutations/cell/generation; p<0.01). DNA sequencing confirmed the expected frameshift mutations with evidence for ongoing mutations of the constructs. Because EMAST-positive tumors are associated with inflammation, we subjected MMR-proficient cells to oxidative stress via H2O2 to examine its effect on hMSH3. A reversible nuclear-to-cytosol shift of hMSH3 was observed upon H2O2 treatment.

Conclusion

EMAST is dependent upon the MMR background, with hMSH3−/− more prone to frameshift mutations than hMSH6−/−, opposite to frameshift mutations observed for mononucleotide repeats. hMSH3−/− mimics complete MMR failure (hMLH1−/−) in inducing EMAST. Given the observed heterogeneous expression of hMSH3 in CRCs with EMAST, hMSH3-deficiency appears to be the event that commences EMAST. Oxidative stress, which causes a shift of hMSH3’s subcellular location, may contribute to an hMSH3 loss-of-function phenotype by sequestering it to the cytosol.  相似文献   

13.

Background

The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh−/− mice to oxidative stress.

Methodology/Principal Findings

The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh−/− phenotpe was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh−/− mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh−/− mice. Lymphoid hyperplasia and a significant reduction in Foxp3+ regulatory T cells were observed only in Mutyh−/− mice.

Conclusions

The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.  相似文献   

14.

Introduction

Allergic reaction to dust mites is a relatively common condition among children, triggering cutaneous and respiratory responses that have a great impact on the health of this population. Anaphylactic hypersensitivity is characterized by an exacerbated response involving the production of regulatory cytokines responsible for stimulating the production of IgE antibodies.

Objective

To investigate an association of variants in cytokine genes (IL1A −889, IL1B −511, +3962, IL1R 1970, IL1RA 11100, IL4RA +1902, IL12 −1188, IFNG +874, TGFB1 codon 10, codon 25, TNFA −308, −238, IL2 −330, +166, IL4 −1098, −590, −33, IL6 −174, nt565, and IL10 −1082, −819, −592) between patients sensitive to dust mites and a control group.

Methods

A total of 254 patients were grouped as atopic and non-atopic according to sensitivity as evaluated by the Prick Test and to cytokine genotyping by the polymerase chain reaction-sequence specific primers (PCR-SSP) method using the Cytokine Genotyping Kit.

Results

A comparison between individuals allergic to Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Blomia tropicalis and a non-atopic control group showed significant differences between allele and genotype frequencies in the regulatory regions of cytokine genes, with important evidence for IL4 −590 in T/C (10.2% vs. 43.1%, odd ratio [OR] = 0.15, p = 5.2 10−8, pc = 0.0000011, and 95% confidence interval [95%CI] = 0.07–0.32) and T/T genotypes (42.9% vs. 13.8%, OR = 4.69, p = 2.5 10−6, pc = 0.000055, and 95%CI = 2.42–9.09). Other associations were observed in the pro-inflammatory cytokines IL1A −889 (T/T, C, and T) and IL2 −330 (G/T and T/T) and the anti-inflammatory cytokines IL4RA +1902 (A and G), IL4 −590 (T/C, T/T, C, and T), and IL10 −592 (A/A, C/A, A, and C).

Conclusion

Our results suggest a possible association between single nucleotide polymorphisms (SNPs) in cytokine genes and hypersensitivity to dust mites.  相似文献   

15.

Background

Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses.

Methods

We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C+/+ and GC-C−/− mice were bred with interleukin (IL)-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10−/−, GC-C+/+IL-10−/− and GC-C−/−IL-10−/− mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line.

Results

Relative to GC-C+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C−/− mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C−/−IL-10−/− animals was significantly more severe relative to GC-C+/+IL-10−/− mice. Unlike GC-C+/+IL-10−/− controls, colon pathology in GC-C−/−IL-10−/− animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C−/−IL-10−/− mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells.

Conclusions

The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by systemic cytokine burst or loss of mucosal immune cell immunosuppression. These data as well as the apparent intestinal inflammation in human GC-C mutant kindred underscore the importance of GC-C in regulating the response to injury and inflammation within the gut.  相似文献   

16.

Objective

Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT) directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis.

Methods and Results

TIGIT was upregulated on CD4+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr−/− mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production.

Conclusions

Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells.  相似文献   

17.
18.

Objective

The purpose of this study was to investigate chemokine profiles and their functional roles in the early phase of fracture healing in mouse models.

Methods

The expression profiles of chemokines were examined during fracture healing in wild-type (WT) mice using a polymerase chain reaction array and histological staining. The functional effect of monocyte chemotactic protein-1 (MCP-1) on primary mouse bone marrow stromal cells (mBMSCs) was evaluated using an in vitro migration assay. MCP-1−/− and C-C chemokine receptor 2 (CCR2)−/− mice were fractured and evaluated by histological staining and micro-computed tomography (micro-CT). RS102895, an antagonist of CCR2, was continuously administered in WT mice before or after rib fracture and evaluated by histological staining and micro-CT. Bone graft exchange models were created in WT and MCP-1−/− mice and were evaluated by histological staining and micro-CT.

Results

MCP-1 and MCP-3 expression in the early phase of fracture healing were up-regulated, and high levels of MCP-1 and MCP-3 protein expression observed in the periosteum and endosteum in the same period. MCP-1, but not MCP-3, increased migration of mBMSCs in a dose-dependent manner. Fracture healing in MCP-1−/− and CCR2−/− mice was delayed compared with WT mice on day 21. Administration of RS102895 in the early, but not in the late phase, caused delayed fracture healing. Transplantation of WT-derived graft into host MCP-1−/− mice significantly increased new bone formation in the bone graft exchange models. Furthermore, marked induction of MCP-1 expression in the periosteum and endosteum was observed around the WT-derived graft in the host MCP-1−/− mouse. Conversely, transplantation of MCP-1−/− mouse-derived grafts into host WT mice markedly decreased new bone formation.

Conclusions

MCP-1/CCR2 signaling in the periosteum and endosteum is essential for the recruitment of mesenchymal progenitor cells in the early phase of fracture healing.  相似文献   

19.

Background

Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM.

Methodology/Principal Findings

Wild type (WT) and IL-10−/− C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10−/− mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10−/− and WT mice were i.t. infected with 1×106 Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10−/− mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10−/− mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4+ and CD8+ T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10−/− mice.

Conclusions/Significance

Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.  相似文献   

20.

Background

small B-cell neoplasms can show plasmacytic differentiation and may potentially progress to aggressive lymphoma (DLBCL). Epstein-Barr virus (EBV) infection may cause the transformation of malignant cells in vitro.

Design and Method

we established VR09 cell line with plasmacytic differentiation, obtained from a case of atypical, non-CLL B-cell chronic lymphoproliferative disease with plasmacytic features. We used flow cytometry, immunohistochemistry, polymerase chain reaction, cytogenetic analysis and florescence in situ hybridization in the attempt at thoroughly characterizing the cell line. We showed VR09 tumorigenic potential in vivo, leading to the development of activated DLBCL with plasmacytic features.

Results

VR09 cells displayed plasmacytic appearance and grew as spherical tumors when inoculated subcutaneously into immunodeficient Rag2−/− γ-chain−/− mice. VR09 cell line and tumors displayed the phenotype of activated stage of B cell maturation, with secretory differentiation (CD19+ CD20+ CD79a+ CD79b+/− CD138+ cyclin D1- Ki67 80% IgM+ IgD+ MUM1+ MNDA+ CD10- CD22+ CD23+ CD43+ K+, λ- Bcl2+ Bcl6-) and they presented episomal EBV genome, chromosome 12 trisomy, lack of c-MYC rearrangement and Myd88 gene mutation, presence of somatic hypermutation in the VH region, and wild-type p53.

Conclusion

This new EBV-positive cell line may be useful to further characterize in vivo activated DLBCL with plasmacytic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号