首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.  相似文献   

2.
Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.  相似文献   

3.
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx2dact that encodes the elastase recognition site. The presence of stx2dact was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx2dact gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx1, two (P1332 and P1334) carried stx1 and stx2c, and one (CL-15) carried stx2c. One isolate, P1130, harbored only stx2dact. The Vero cell cytotoxicities of supernatants from P1130 and stx1 deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.  相似文献   

4.
The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2)-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla(NDM-1) gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1) gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1)-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1) gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1) gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.  相似文献   

5.
Escherichia coli is an important etiologic agent of lower respiratory tract infections (LRTI). Multidrug-resistant E. coli EC302/04 was isolated from a tracheal aspirate, and its genome sequence is expected to provide insights into antimicrobial resistance as well as adaptive and virulence mechanisms of E. coli involved in LRTI.  相似文献   

6.
In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.  相似文献   

7.
Fecal pollution of water resources is an environmental problem of increasing importance. Identification of individual host sources of fecal Escherichia coli, such as humans, pets, production animals, and wild animals, is prerequisite to formulation of remediation plans. Ribotyping has been used to distinguish fecal E. coli of human origin from pooled fecal E. coli isolates of nonhuman origin. We have extended application of this technique to distinguishing fecal E. coli ribotype patterns from human and seven individual nonhuman hosts. Classification accuracy was best when the analysis was limited to three host sources. Application of this technique to identification of host sources of fecal coliforms in water could assist in formulation of pollution reduction plans.  相似文献   

8.
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6′)-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.  相似文献   

9.
blaSHV genes from Escherichia coli and Salmonella enterica isolates from chicken (n = 19) and pork (n = 1) were identified as blaSHV-2 (n = 5) or blaSHV-2a (n = 15). Eighteen were on plasmids of the incI1 (n = 15), incP (n = 2), and incFIB (n = 1) incompatibility groups. These plasmids were all transferable by conjugation between E. coli and S. enterica.  相似文献   

10.
11.
Multidrug resistance blaCMY-2 plasmids that confer resistance to expanded-spectrum cephalosporins have been found in multiple bacterial species collected from different hosts worldwide. The widespread distribution of blaCMY-2 plasmids may be driven by antibiotic use that selects for the dissemination and persistence of these plasmids. Alternatively, these plasmids may persist and spread in bacterial populations in the absence of selection pressure if a balance exists among conjugative transfer, segregation loss during cell division, and fitness cost to the host. We conducted a series of experiments (both in vivo and in vitro) to study these mechanisms for three blaCMY-2 plasmids, peH4H, pAR060302, and pAM04528. Results of filter mating experiments showed that the conjugation efficiency of blaCMY-2 plasmids is variable, from <10(-7) for pAM04528 and peH4H to ~10(-3) for pAR060302. Neither peH4H nor pAM04528 was transferred from Escherichia coli strain DH10B, but peH4H was apparently mobilized by the coresident trimethoprim resistance-encoding plasmid pTmpR. Competition studies showed that carriage of blaCMY-2 plasmids imposed a measurable fitness cost on the host bacteria both in vitro (0.095 to 0.25) and in vivo (dairy calf model). Long-term passage experiments in the absence of antibiotics demonstrated that plasmids with limited antibiotic resistance phenotypes arose, but eventually drug-sensitive, plasmid-free clones dominated the populations. Given that plasmid decay or loss is inevitable, we infer that some level of selection is required for the long-term persistence of blaCMY-2 plasmids in bacterial populations.  相似文献   

12.
13.
Atypical enteropathogenic Escherichia coli (aEPEC) is considered to be an emerging enteropathogen that is more prevalent than typical EPEC in developing and developed countries. The major adherence factor, intimin, an outer membrane protein encoded by eae, plays a pivotal role in the pathogenesis of aEPEC. This study investigated the distribution and polymorphisms of intimin subtypes of 143 aEPEC strains from diarrheal patients, healthy carriers, animals, and raw meats in China. These aEPEC strains belonged to more than 71 different serotypes, which comprised 52 O serogroups and 24 H types. Sixty-eight different eae genotypes and 19 intimin subtypes were detected. Eighteen, eight, seven, and five intimin subtypes were identified from 86 diarrheal patients, 14 healthy carriers, 19 animals, and 24 raw meats strains, respectively. Intimin β1 was the most prevalent subtype in strains from diarrheal patients (34.88%) and animals (47.37%). There was a statistically significant difference in the distribution of eae-β1 between diarrheal patients and healthy carriers (P = 0.004). Intimin-θ was more predominant among raw meat strains (50%) than among diarrheal patients strains (12.79%, P = 0.0003), healthy carrier strains (7.14%, P = 0.007), or animal strains (15.79%, P = 0.020). The two predominant subtypes (eae-β1 and eae-θ) had considerable polymorphisms with no significant differences among the four sources. PFGE analysis revealed 119 distinct patterns and the strains were clustered into 11 groups with similarity indices ranging from 63% to 100%. These results suggest that in China, aEPEC strains from different sources are highly heterogeneous. Animals and raw meats are important sources of genetically diverse intimin-harboring aEPEC, which might serve as important transmission vehicles of these bacteria.  相似文献   

14.

Objective

The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source.

Methods

The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol.

Results

Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15).

Conclusion

In conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence.  相似文献   

15.
16.
IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P < 0.001) and increased movement of the IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.  相似文献   

17.
In this study, mechanisms of plasmid-mediated sulfamethoxazole resistances in the clinical strains of multi-drug resistant (MDR) Shigella flexneri 2a were elucidated for the first time in Bangladesh. From 2006 to 2011, a total of 200 S. flexneri 2a strains were randomly selected from the stock of the Enteric and Food Microbiology Laboratory of icddr,b. Antimicrobial susceptibility of the strains showed 73%, 98%, 93%, 58%, 98%, 64% and 4% resistance to trimethoprim-sulfamethoxazole, nalidixic acid, ampicillin, erythromycin, tetracycline, ciprofloxacin and ceftriaxone respectively. Plasmid profiling revealed heterogeneous patterns and interestingly, all the trimethoprim-sulfamethoxazole resistant (SXTR) strains yielded a distinct 4.3 MDa plasmid compared to that of the trimethoprim-sulfamethoxazole susceptible (SXTS) strains. Curing of this 4.3 MDa plasmid resulted in the susceptibility to sulfamethoxazole alone suggesting the involvement of this plasmid in the resistance of sulfamethoxazole. Moreover, PCR analysis showed the presence of sul2 gene in SXTR strains which is absent in SXTS strains as well as in the 4.3 MDa plasmid-cured derivatives, confirming the involvement of sul2 in the resistance of sulfamethoxazole. Furthermore, pulsed-field gel electrophoresis (PFGE) analysis revealed that both the SXTR and SXTS strains were clonal. This study will significantly contributes to the knowledge on acquired drug resistance of the mostly prevalent S. flexneri 2a and further warrants continuous monitoring of the prevalence and correlation of this resistance determinants amongst the clinical isolates of Shigella and other enteric pathogens around the world to provide effective clinical management of the disease.  相似文献   

18.
To determine the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in slaughter animals in Dhaka, Bangladesh, we collected rectal contents immediately after animals were slaughtered. Of the samples collected from buffalo (n = 174), cows (n = 139), and goats (n = 110), 82.2%, 72.7%, and 11.8% tested positive for stx1 and/or stx2, respectively. STEC could be isolated from 37.9%, 20.1%, and 10.0% of the buffalo, cows, and goats, respectively. STEC O157 samples were isolated from 14.4% of the buffalo, 7.2% of the cows, and 9.1% of the goats. More than 93% (n = 42) of the STEC O157 isolates were positive for the stx2, eae, katP, etpD, and enterohemorrhagic E. coli hly (hlyEHEC) virulence genes. STEC O157 isolates were characterized by seven recognized phage types, of which types 14 (24.4%) and 31 (24.4%) were predominant. Subtyping of the 45 STEC O157 isolates by pulsed-field gel electrophoresis showed 37 distinct restriction patterns, suggesting a heterogeneous clonal diversity. In addition to STEC O157, 71 STEC non-O157 strains were isolated from 60 stx-positive samples from 23.6% of the buffalo, 12.9% of the cows, and 0.9% of the goats. The STEC non-O157 isolates belonged to 36 different O groups and 52 O:H serotypes. Unlike STEC O157, most of the STEC non-O157 isolates (78.9%) were positive for stx1. Only 7.0% (n = 5) of the isolates were positive for hlyEHEC, and none was positive for eae, katP, and etpD. None of the isolates was positive for the iha, toxB, and efa1 putative adhesion genes. However, 35.2% (n = 25), 11.3% (n = 8), 12.7% (n = 9), and 12.7% (n = 9) of the isolates were positive for the lpfO113, saa, lpfAO157/01-141, and lpfAO157/OI-154 genes, respectively. The results of this study provide the first evidence that slaughtered animals like buffalo, cows, and goats in Bangladesh are reservoirs for STEC, including the potentially virulent STEC strain O157.  相似文献   

19.
Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli strains isolated from the feces of 138 humans and 376 domesticated animals from Jeonnam Province, South Korea, performed using primers specific for the chuA and yjaA genes and an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E. coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in about 17% (8 of 48) of isolates from feces of 24 wild geese and in 3% (3 of 96) of isolates obtained from the Yeongsan River in Jeonnam Province, South Korea. The distribution of E. coli strains in phylogenetic groups A, B1, and D varied depending on the host examined, and there was no apparent seasonal variation in the distribution of strains in phylogenetic groups among the Yeongsan River isolates. The distribution of four virulence genes (eaeA, hlyA, stx1, and stx2) in isolates was also examined by using multiplex PCR. Virulence genes were detected in about 5% (38 of 707) of the total group of unique strains examined, with 24, 13, 13, and 9 strains containing hlyA, eaeA, stx2, and stx1, respectively. The virulence genes were most frequently present in phylogenetic group B1 strains isolated from beef cattle. Taken together, results of these studies indicate that E. coli strains in phylogenetic group B2 were rarely found in humans and domesticated animals in Jeonnam Province, South Korea, and that the majority of strains containing virulence genes belonged to phylogenetic group B1 and were isolated from beef cattle. Results of this study also suggest that the relationship between the presence and types of virulence genes and phylogenetic groupings may differ among geographically distinct E. coli populations.Escherichia coli is a normal inhabitant of the lower intestinal tract of warm-blooded animals and humans. While the majority of E. coli strains are commensals, some are known to be pathogenic, causing intestinal and extraintestinal diseases, such as diarrhea and urinary tract infections (42). Phylogenetic studies done using multilocus enzyme electrophoresis and 72 E. coli strains in the E. coli reference collection showed that E. coli strains can be divided into four phylogenetic groups (A, B1, B2, and D) (20, 41, 48). Recently, a potential fifth group (E) has also been proposed (11). Since multiplex PCR was developed for analysis of phylogenetic groups (6), a number of studies have analyzed a variety of E. coli strains for their phylogenetic group association (10, 12, 17, 18, 23, 54). Duriez et al. (10) reported the possible influence of geographic conditions, dietary factors, use of antibiotics, and/or host genetic factors on the distribution of phylogenetic groups among 168 commensal E. coli strains isolated from human stools from three geographically distinct populations in France, Croatia, and Mali. Random-amplified polymorphic DNA analysis of the intraspecies distribution of E. coli in pregnant women and neonates indicated that there was a correlation between the distribution of phylogenetic groups, random-amplified polymorphic DNA groups, and virulence factors (54). Moreover, based on comparisons of the distribution of E. coli phylogenetic groups among humans of different sexes and ages, it has been suggested that E. coli genotypes are likely influenced by morphological, physiological, and dietary differences (18). In addition, climate has also been proposed to influence the distribution of strains within E. coli phylogenetic groups (12). There are now several reports indicating that there is a potential relationship between E. coli phylogenetic groups, age, and disease. For example, E. coli isolates belonging to phylogenetic group B2 have been shown to predominate in infants with neonatal bacterial meningitis (27) and among urinary tract and rectal isolates (55). Also, Nowrouzian et al. (39) and Moreno et al. (37) reported that strains belonging to phylogenetic group B2 persisted among the intestinal microflora of infants and were more likely to cause clinical symptoms.Boyd and Hartl (2) reported that among the E. coli strains in the E. coli reference and the diarrheagenic E. coli collections, strains in phylogenetic group B2 carry the greatest number of virulence factors, followed by those in group D. Virulence factors carried by group B2 strains are thought to contribute to their strong colonizing capacity; a greater number of virulence genes have been detected in resident strains than in transient ones (38). Moreover, a mouse model of extraintestinal virulence showed that phylogenetic group B2 strains killed mice at greater frequency and possessed more virulence determinants than strains in other phylogenetic groups, suggesting a link between phylogeny and virulence genes in E. coli extraintestinal infection (45). In contrast, Johnson and Kuskowski (25) suggested that a group B2 ancestral strain might have simply acquired virulence genes by chance and that these genes were vertically inherited by group members during clonal expansion. However, numerous studies published to date suggest that there is a relationship between the genomic background of phylogenetic group B2 and its association with virulence factors (12, 28, 35, 39, 45).Both enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC, respectively) strains are among the most important food-borne pathogens worldwide, often causing severe gastrointestinal disease and fatal infections (13). While EPEC strains cause diarrhea and generally do not produce enterotoxin, they possess an adherence factor which is controlled by the chromosomal gene eaeA, encoding intimin (8). Unlike the EPEC strains, however, the EHEC strains typically contain the hlyA, stx1, and stx2 virulence genes, encoding hemolysins and Shiga-like type 1 and 2 toxins, respectively, and eaeA. The ability to detect EHEC has been greatly facilitated by the use of multiplex PCR (13, 44, 53). Several studies have shown that strains producing Shiga-like toxin 2 are more frequently found in cases of hemolytic-uremic syndrome than are those containing Shiga-like toxin 1 (30, 43, 46, 49).In the study reported here, we examined the distribution of phylogenetic groups and the prevalence of virulence genes in 659 genotypically unique E. coli strains isolated from humans and domestic animals in South Korea. In addition, we also tested 48 and 96 nonunique E. coli isolates from wild geese and the Yeongsan River, respectively, for phylogenetic distribution and virulence gene profiles. Here, we report that contrary to what has been previously reported in other parts of the world, no E. coli strains belonging to phylogenetic group B2 were found in domesticated animals and in humans from Jeonnam Province, South Korea. We also report that among the strains we examined, virulence genes were mainly found in phylogenetic group B1 strains isolated from beef cattle. Results of these studies may prove to be useful for the development of risk management strategies to maintain public health.  相似文献   

20.
From water samples collected monthly between 2000 and 2001 from the Han River in Seoul, sixteen strains of Escherichia coli which confer resistance to at least 10 kinds of antimicrobial agents were isolated. From these isolates, 2 kinds of extended-spectrum β-lactamases (ESBLs) and one plasmid-mediated AmpC β-lactamase were detected; CTX-M-14 from 10 isolates, TEM-52 from 5 isolates, and CMY-1 from one isolate. Class 1 integron gene cassettes, such as aadA1, dfr12-orfF-aadA2, and dfr17-aadA5, were also detected and the integrons are the same as those found in E. coli isolated from swine, poultry, and humans in Korea. The result of this study indicated the importance of river water as a reservoir for antimicrobial resistance genes and resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号