首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.

Background

Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.

Methodology/Principal Findings

L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.

Conclusion/Significance

VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.  相似文献   

2.
Eleven novel human papillomavirus (HPV) types were isolated and characterized from healthy individuals in China. HPV163 belongs to the γ-1 species, HPV 164 and HPV 168 fit in the γ-8 species, HPV 165 and KC5 belongs to the γ-12 species, HPV 168 is closely allied with the γ-4 species, HPV 169 is closely related to the γ-11 species, and HPV 170 is related to the γ-12 species. In addition, HPV 161, HPV 162, and HPV 166 may form a new HPV species of the γ-PV genus. The prevalence of these HPV types in the normal population is low.  相似文献   

3.
Polyomavirus and papillomavirus (papovavirus) capsids are composed of 72 capsomeres of their major capsid proteins, VP1 and L1, respectively. After translation in the cytoplasm, L1 and VP1 pentamerize into capsomeres and are then imported into the nucleus using the cellular α and β karyopherins. Virion assembly only occurs in the nucleus, and cellular mechanisms exist to prevent premature capsid assembly in the cytosol. We have identified the karyopherin family of nuclear import factors as possible “chaperones” in preventing the cytoplasmic assembly of papovavirus capsomeres. Recombinant murine polyomavirus (mPy) VP1 and human papillomavirus type 11 (HPV11) L1 capsomeres bound the karyopherin heterodimer α2β1 in vitro in a nuclear localization signal (NLS)-dependent manner. Because the amino acid sequence comprising the NLS of VP1 and L1 overlaps the previously identified DNA binding domain, we examined the relationship between karyopherin and DNA binding of both mPy VP1 and HPV11 L1. Capsomeres of L1, but not VP1, bound by karyopherin α2β1 or β1 alone were unable to bind DNA. VP1 and L1 capsomeres could bind both karyopherin α2 and DNA simultaneously. Both VP1 and L1 capsomeres bound by karyopherin α2β1 were unable to assemble into capsids, as shown by in vitro assembly reactions. These results support a role for karyopherins as chaperones in the in vivo regulation of viral capsid assembly.  相似文献   

4.
Accumulating evidence suggests that cutaneous human papillomavirus (HPV) infection is associated with non-melanoma skin cancer (NMSC). Little is known about the natural history of cutaneous HPV. A sub-cohort of 209 men with no NMSC history, initially enrolled in the HPV infection in men (HIM) study, were followed for a median of 12.6 months. Epidemiological data were collected through self-administered questionnaires. Cutaneous HPV DNA was measured in normal skin swabs (SS) and eyebrow hairs (EB) for 25 and 16 HPV types in genera β and γ, respectively. Any β HPV infection was more prevalent in SS (67.3%) compared to EB (56.5%, p = 0.04). Incidence in SS was higher than 20 per 1,000 person-months for HPV types 4, 5, 23, 38 and 76. Median duration of persistence of β and γ HPV infection was 8.6 and 6.1 months in EB, respectively, and 11.3 months and 6.3 months, in SS, respectively. Older age (>44 years vs. 18-30 years) was significantly associated with prevalent (SS OR = 3.0, 95% CI = 1.2–7.0) and persistent β HPV infection (EB OR = 6.1, 95% CI = 2.6–14.1). History of blistering sunburn was associated with prevalent (OR = 2.8, 95% CI = 1.3–5.8) and persistent (OR = 2.3, 95% CI = 1.2–4.6) β HPV infection in SS. Cutaneous HPV is highly prevalent in men, with age and blistering sunburn being significant risk factors for cutaneous β HPV infection.  相似文献   

5.
The mechanism by which papillomaviruses breach cellular membranes to deliver their genomic cargo to the nucleus is poorly understood. Here, we show that infection by a broad range of papillomavirus types requires the intramembrane protease γ secretase. The γ-secretase inhibitor (S,S)-2-[2-(3,5-difluorophenyl)-acetylamino]-N-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)-propionamide (compound XXI) inhibits infection in vitro by all types of papillomavirus pseudovirions tested, with a 50% inhibitory concentration (IC50) of 130 to 1,000 pM, regardless of reporter construct and without impacting cellular viability. Conversely, XXI does not inhibit in vitro infection by adenovirus or pseudovirions derived from the BK or Merkel cell polyomaviruses. Vaginal application of XXI prevents infection of the mouse genital tract by human papillomavirus type 16 (HPV16) pseudovirions. Nicastrin and presenilin-1 are essential components of the γ-secretase complex, and mouse embryo fibroblasts deficient in any one of these components were not infected by HPV16, whereas wild-type and β-secretase (BACE1)-deficient cells were susceptible. Neither the uptake of HPV16 into Lamp-1-positive perinuclear vesicles nor the disassembly of capsid to reveal both internal L1 and L2 epitopes and bromodeoxyuridine (BrdU)-labeled encapsidated DNA is dependent upon γ-secretase activity. However, blockade of γ-secretase activity by XXI prevents the BrdU-labeled DNA encapsidated by HPV16 from reaching the ND10 subnuclear domains. Since prior studies indicate that L2 is critical for endosomal escape and targeting of the viral DNA to ND10 and that γ secretase is located in endosomal membranes, our findings suggest that either L2 or an intracellular receptor are cleaved by γ secretase as papillomavirus escapes the endosome.The necessary causal association of persistent infection by an “oncogenic” type of human papillomavirus (HPV) with cervical cancer is firmly established (52, 53). HPV is the most prevalent sexually transmitted infection, and although the majority of patients clear their infection, HPV is directly responsible for 5% of all cancer deaths worldwide (30). HPV is also associated with multiple other anogenital cancers and oropharyngeal cancers.The life cycle of HPV is closely linked to epithelial differentiation within stratified squamous epithelia (16). Initial infection occurs within the undifferentiated proliferative basal cell layer in which only the viral early proteins are expressed, whereas production of the late proteins and, thus, progeny virus is restricted to the terminally differentiated suprabasal compartment (53). The exquisite dependence of virion production upon epithelial differentiation and lack of a rapid phenotype in culture can be circumvented by ectopic expression of the capsid proteins L1 and L2 in cells maintaining viral genome or reporter constructs as episomes, resulting in “quasivirions” or “pseudovirions,” respectively, whose infectivity can be readily and rapidly quantified in vitro or in vivo (6, 11, 35, 41).The completion of the entire papillomavirus life cycle is species specific. However, studies with bovine papillomavirus (BPV) in horses and hamsters, HPV pseudovirions in mouse challenge models, and quasivirions in rabbits suggest that virion internalization and delivery of the encapsidated DNA to the nucleus are promiscuous and that tropism is determined at a later stage of the life cycle (11, 27, 29, 39).Although significant progress has been made in understanding the HPV life cycle and virion structure, many of the molecular events of virus internalization and infection are poorly defined (43). Both the L1 (major) and L2 (minor) capsid proteins provide essential functions during infection (41) (8). L1 is sufficient to form empty capsids, termed virus-like particles (VLPs) (25), which bind to basement membrane and to the cell surface and which also form the basis of the licensed HPV vaccines (10). Glycosaminoglycans (GAGs), most notably heparan sulfate (HS), play a critical role in virion binding and infection, both in vitro and in the murine vaginal challenge model, although differences between HPV types and target cells in vitro have been described (14, 19, 20), for example, between HPV16 and HPV31 (4, 34, 42). Once bound to the basement membrane, the virions undergo a conformation change resulting in the surface display of the amino terminus of L2 and its cleavage by a proprotein convertase (PC), furin and/or PC5/PC6, and the transfer of virions to the cell surface (24). The uptake of the virions is apparently slow as late addition of neutralizing antibodies several hours after initial cell surface binding prevents infection in vitro (9). The endocytic mechanisms reported for various papillomavirus types are diverse, but furin cleavage of L2 and endosomal acidification are critical shared steps (15, 38). In a late endosomal compartment, the L1 capsid disassembles, releasing L2 associated with the previously encapsidated DNA to gain access to the nucleus by an unknown mechanism and to accumulate at the subnuclear domain, ND10 (13). Although L2 contains a C-terminal nuclear localization signal (17), entry to mitosis, which is associated with the dissolution of the nuclear membrane, is required for infection, suggesting that the complex with the viral nucleohistone core is unable pass through nuclear pores (36). It is unclear how the L2-genome complex escapes the endocytic compartment, but the carboxy terminus of L2 also contains both DNA binding and a membrane-destabilizing peptide (21).γ Secretase is an intramembranously cleaving protease (I-CliP) linked to Alzheimer''s disease through its cleavage of amyloid precursor protein (APP) (1). It is a multicomponent complex, and presenilin (PS) is the catalytic unit whose active site contains two aspartate residues. In addition to the nine-pass transmembrane protein PS, γ secretase requires nicastrin (NCT), anterior pharynx defective-1 (APH-1), and presenilin enhancer-2 in an equimolar ratio for proteolytic activity (28). The subcellular localization of γ secretase is controversial but includes the endoplasmic reticulum (23), endosome (26), lysosome (31), and plasma membrane (37), all of which are subcellular locales possibly traversed by papillomavirus during infection (43).By analogy to the cleavage of L2 by furin that is critical for exit from the endosomes (38), we hypothesized that I-CLiP might contribute to papillomavirus infection. Here, we report that a γ-secretase inhibitor prevents HPV infection both in vitro and in the mouse vaginal challenge model and that cell lines lacking essential components of γ secretase are refractory to HPV infection.  相似文献   

6.
Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV.  相似文献   

7.
Inhibition of amyloid β-peptide (Aβ) production by blocking γ-secretase activity is at present one of the most promising therapeutic strategies to slow progression of Alzheimer’s disease pathology. γ-secretase inhibitors apparently block Aβ generation via interference with presenilin (PS) function. Besides being an essential component of the γ-secretase complex, PS itself may be an aspartyl protease with γ-secretase activity, which is not only required for Aβ production but also for a similar proteolytic process involved in Notch signaling. Here we demonstrate that treatment of zebrafish embryos with a known γ-secretase inhibitor affects embryonic development in a manner indistinguishable from Notch signaling deficiencies at morphological, molecular and biochemical levels. This indicates severe side-effects of γ-secretase inhibitors in any Notch-dependent cell fate decision and demonstrates that the zebrafish is an ideal vertebrate system to validate compounds that selectively affect Aβ production, but not Notch signaling, under in vivo conditions.  相似文献   

8.
Type I interferons (IFN-α and β) induce dynamic host defense mechanisms to inhibit viral infections. It has been recently recognized that the interferon-inducible transmembrane proteins (IFITM) 1, 2 and 3 can block entry of a broad spectrum of RNA viruses. However, no study to date has focused on the role of IFITM proteins in DNA virus restriction. Here, we demonstrate that IFN-α or -β treatment of keratinocytes substantially decreases human papillomavirus 16 (HPV16) infection while robustly inducing IFITM1, 2 and 3 expression. However, IFITM1, 2 and 3 overexpression did not inhibit HPV16 infection; rather, IFITM1 and IFITM3 modestly enhanced HPV16 infection in various cell types including primary keratinocytes. Moreover, IFITM1, 2 and 3 did not inhibit infection by two other DNA viruses, human cytomegalovirus (HCMV) and adenovirus type 5 (Ad5). Taken together, we reveal that the entry of several DNA viruses, including HPV, HCMV, and Ad5 is not affected by IFITM1, 2 and 3 expression. These results imply that HPV, and other DNA viruses, may bypass IFITM restriction during intracellular trafficking.  相似文献   

9.
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = −0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ→α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.  相似文献   

10.
Current L1 virus-like particle (VLP) vaccines provide type-restricted protection against a small subset of the human papillomavirus (HPV) genotypes associated with cervical cancer, necessitating continued cytologic screening of vaccinees. Cervical cancer is most problematic in countries that lack the resources for screening or highly multivalent HPV VLP vaccines, suggesting the need for a low-cost, broadly protective vaccinogen. Here, N-terminal L2 polypeptides comprising residues 1 to 88 or 11 to 200 derived from HPV16, bovine papillomavirus type 1 (BPV1), or cottontail rabbit papillomavirus (CRPV) were produced in bacteria. Rabbits were immunized with these N-terminal L2 polypeptides and concurrently challenged with CRPV and rabbit oral papillomavirus (ROPV). Vaccination with either N-terminal L2 polypeptides of CRPV effectively protected rabbits from CRPV challenge but not from papillomas induced by cutaneous challenge with CRPV genomic DNA. Furthermore, papillomas induced by CRPV genomic DNA deficient for L2 expression grew at the same rate as those induced by wild-type CRPV genomic DNA, further suggesting that the L2 polypeptide vaccines lack therapeutic activity. Neutralizing serum antibody titers of >15 correlated with protection (P < 0.001), a finding consistent with neutralizing antibody-mediated protection. Surprisingly, a remarkable degree of protection against heterologous papillomavirus types was observed after vaccination with N-terminal L2 polypeptides. Notably, vaccination with HPV16 L2 11-200 protected against cutaneous and mucosal challenge with CRPV and ROPV, respectively, papillomaviruses that are evolutionarily divergent from HPV16. Further, vaccination with HPV16 L2 11-200 generates broadly cross-neutralizing serum antibody, suggesting the potential of L2 as a second-generation preventive HPV vaccine antigen.  相似文献   

11.
Understanding how different species of Aβ are generated by γ-secretase cleavage has broad therapeutic implications, because shifts in γ-secretase processing that increase the relative production of Aβx-42/43 can initiate a pathological cascade, resulting in Alzheimer disease. We have explored the sequential stepwise γ-secretase cleavage model in cells. Eighteen BRI2-Aβ fusion protein expression constructs designed to generate peptides from Aβ1–38 to Aβ1–55 and C99 (CTFβ) were transfected into cells, and Aβ production was assessed. Secreted and cell-associated Aβ were detected using ELISA and immunoprecipitation MALDI-TOF mass spectrometry. Aβ peptides from 1–38 to 1–55 were readily detected in the cells and as soluble full-length Aβ proteins in the media. Aβ peptides longer than Aβ1–48 were efficiently cleaved by γ-secretase and produced varying ratios of Aβ1–40:Aβ1–42. γ-Secretase cleavage of Aβ1–51 resulted in much higher levels of Aβ1–42 than any other long Aβ peptides, but the processing of Aβ1–51 was heterogeneous with significant amounts of shorter Aβs, including Aβ1–40, produced. Two PSEN1 variants altered Aβ1–42 production from Aβ1–51 but not Aβ1–49. Unexpectedly, long Aβ peptide substrates such as Aβ1–49 showed reduced sensitivity to inhibition by γ-secretase inhibitors. In contrast, long Aβ substrates showed little differential sensitivity to multiple γ-secretase modulators. Although these studies further support the sequential γ-secretase cleavage model, they confirm that in cells the initial γ-secretase cleavage does not precisely define subsequent product lines. These studies also raise interesting issues about the solubility and detection of long Aβ, as well as the use of truncated substrates for assessing relative potency of γ-secretase inhibitors.  相似文献   

12.
13.
The available virus-like particle (VLP)-based prophylactic vaccines against specific human papillomavirus (HPV) types afford close to 100% protection against the type-associated lesions and disease. Based on papillomavirus animal models, it is likely that protection against genital lesions in humans is mediated by HPV type-restricted neutralizing antibodies that transudate or exudate at the sites of genital infection. However, a correlate of protection was not established in the clinical trials because few disease cases occurred, and true incident infection could not be reliably distinguished from the emergence or reactivation of prevalent infection. In addition, the current assays for measuring vaccine-induced antibodies, even the gold standard HPV pseudovirion (PsV) in vitro neutralization assay, may not be sensitive enough to measure the minimum level of antibodies needed for protection. Here, we characterize the recently developed model of genital challenge with HPV PsV and determine the minimal amounts of VLP-induced neutralizing antibodies that can afford protection from genital infection in vivo after transfer into recipient mice. Our data show that serum antibody levels >100-fold lower than those detectable by in vitro PsV neutralization assays are sufficient to confer protection against an HPV PsV genital infection in this model. The results clearly demonstrate that, remarkably, the in vivo assay is substantially more sensitive than in vitro PsV neutralization and thus may be better suited for studies to establish correlates of protection.  相似文献   

14.
γ-Secretase is an intramembrane aspartyl protease that cleaves the amyloid precursor protein to produce neurotoxic β-amyloid peptides (i.e. Aβ42) that have been implicated in the pathogenesis of Alzheimer disease. Small molecule γ-secretase modulators (GSMs) have emerged as potential disease-modifying treatments for Alzheimer disease because they reduce the formation of Aβ42 while not blocking the processing of γ-secretase substrates. We developed clickable GSM photoaffinity probes with the goal of identifying the target of various classes of GSMs and to better understand their mechanism of action. Here, we demonstrate that the photoaffinity probe E2012-BPyne specifically labels the N-terminal fragment of presenilin-1 (PS1-NTF) in cell membranes as well as in live cells and primary neuronal cultures. The labeling is competed in the presence of the parent imidazole GSM E2012, but not with acid GSM-1, allosteric GSI BMS-708163, or substrate docking site peptide inhibitor pep11, providing evidence that these compounds have distinct binding sites. Surprisingly, we found that the cross-linking of E2012-BPyne to PS1-NTF is significantly enhanced in the presence of the active site-directed GSI L-685,458 (L458). In contrast, L458 does not affect the labeling of the acid GSM photoprobe GSM-5. We also observed that E2012-BPyne specifically labels PS1-NTF (active γ-secretase) but not full-length PS1 (inactive γ-secretase) in ANP.24 cells. Taken together, our results support the hypothesis that multiple binding sites within the γ-secretase complex exist, each of which may contribute to different modes of modulatory action. Furthermore, the enhancement of PS1-NTF labeling by E2012-BPyne in the presence of L458 suggests a degree of cooperativity between the active site of γ-secretase and the modulatory binding site of certain GSMs.  相似文献   

15.

Background

Selective modulation of different Aβ products of an intramembrane protease γ-secretase, could be the most promising strategy for development of effective therapies for Alzheimer''s disease. We describe how different drug-candidates can modulate γ-secretase activity in cells, by studying how DAPT affects changes in γ-secretase activity caused by gradual increase in Aβ metabolism.

Results

Aβ 1–40 secretion in the presence of DAPT shows biphasic activation-inhibition dose-response curves. The biphasic mechanism is a result of modulation of γ-secretase activity by multiple substrate and inhibitor molecules that can bind to the enzyme simultaneously. The activation is due to an increase in γ-secretase''s kinetic affinity for its substrate, which can make the enzyme increasingly more saturated with otherwise sub-saturating substrate. The noncompetitive inhibition that prevails at the saturating substrate can decrease the maximal activity. The synergistic activation-inhibition effects can drastically reduce γ-secretase''s capacity to process its physiological substrates. This reduction makes the biphasic inhibitors exceptionally prone to the toxic side-effects and potentially pathogenic. Without the modulation, γ-secretase activity on it physiological substrate in cells is only 14% of its maximal activity, and far below the saturation.

Significance

Presented mechanism can explain why moderate inhibition of γ-secretase cannot lead to effective therapies, the pharmacodynamics of Aβ-rebound phenomenon, and recent failures of the major drug-candidates such as semagacestat. Novel improved drug-candidates can be prepared from competitive inhibitors that can bind to different sites on γ-secretase simultaneously. Our quantitative analysis of the catalytic capacity can facilitate the future studies of the therapeutic potential of γ-secretase and the pathogenic changes in Aβ metabolism.  相似文献   

16.
Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit γ-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by γ-secretase produces β-amyloid peptides (Aβ40 and Aβ42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on γ-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of γ-secretase activity, including >90% reductions in the generation of Aβ40, Aβ42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of γ-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Aβ40, Aβ42, and the APP and Notch intracellular domains. These results argue against overproduction of Aβ42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function.  相似文献   

17.
18.
Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-terminal cytoplasmic region of CD151 but does not require its tyrosine-based sorting motif. Reexpression of the wild-type CD151 but not mutants affecting integrin functions restored virus internalization in CD151-depleted cells. Accordingly, short interfering RNA (siRNA) gene knockdown experiments confirmed that CD151-associated integrins (i.e., α3β1 and α6β1/4) are involved in HPV16 infection. Furthermore, palmitoylation-deficient CD151 did not support HPV16 cell entry. These data show that complex formation of CD151 with laminin-binding integrins and integration of the complex into tetraspanin-enriched microdomains are critical for HPV16 endocytosis.  相似文献   

19.
The presenilin (PS)-dependent site 3 (S3) cleavage of Notch liberates its intracellular domain (NICD), which is required for Notch signaling. The similar γ-secretase cleavage of the β-amyloid precursor protein (βAPP) results in the secretion of amyloid β-peptide (Aβ). However, little is known about the corresponding C-terminal cleavage product (CTFγ). We have now identified CTFγ in brain tissue, in living cells, as well as in an in vitro system. Generation of CTFγ is facilitated by PSs, since a dominant-negative mutation of PS as well as a PS gene knock out prevents its production. Moreover, γ-secretase inhibitors, including one that is known to bind to PS, also block CTFγ generation. Sequence analysis revealed that CTFγ is produced by a novel γ-secretase cut, which occurs at a site corresponding to the S3 cleavage of Notch.  相似文献   

20.
Processing of the amyloid precursor protein (APP) by β- and γ-secretases generates pathogenic β-amyloid (Aβ) peptides associated with Alzheimer disease (AD), whereas cleavage of APP by α-secretases precludes Aβ formation. Little is known about the role of α-secretase cleavage in γ-secretase regulation. Here, we show that α-secretase-cleaved APP C-terminal product (αCTF) functions as an inhibitor of γ-secretase. We demonstrate that the substrate inhibitory domain (ASID) within αCTF, which is bisected by the α-secretase cleavage site, contributes to this negative regulation because deleting or masking this domain turns αCTF into a better substrate for γ-secretase. Moreover, α-secretase cleavage can potentiate the inhibitory effect of ASID. Inhibition of γ-secretase activity by αCTF is observed in both in vitro and cellular systems. This work reveals an unforeseen role for α-secretase in generating an endogenous γ-secretase inhibitor that down-regulates the production of Aβ. Deregulation of this feedback mechanism may contribute to the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号