首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To invade and metastasize to distant loci, breast cancer cells must breach the layer of basement membrane surrounding the tumor and then invade through the dense collagen I-rich extracellular environment of breast tissue. Previous studies have shown that breast cancer cell aggregate morphology in basement membrane extract correlated with cell invasive capacity in some contexts. Moreover, cell lines from the same aggregate morphological class exhibited similarities in gene expression patterns. To further assess the capacity of cell and aggregate morphology to predict invasive capacity in physiologically relevant environments, six cell lines with varied cell aggregate morphologies were assessed in a variety of assays including a 3D multicellular invasion assay that recapitulates cell-cell and cell-environment contacts as they exist in vivo in the context of the primary breast tumor. Migratory and invasive capacities as measured through a 2D gap assay and a 3D spheroid invasion assay reveal that breast cancer cell aggregate morphology alone is insufficient to predict migratory speed in 2D or invasive capacity in 3D. Correlations between the 3D spheroid invasion assay and gene expression profiles suggest this assay as an inexpensive functional method to predict breast cancer invasive capacity.  相似文献   

2.
Enforced EGFR activation upon gene amplification and/or mutation is a common hallmark of malignant glioma. Small molecule EGFR tyrosine kinase inhibitors, such as erlotinib (Tarceva), have shown some activity in a subset of glioma patients in recent trials, although the reported data on the cellular basis of glioma cell responsiveness to these compounds have been contradictory. Here we have used a panel of human glioma cell lines, including cells with amplified or mutant EGFR, to further characterize the cellular effects of EGFR inhibition with erlotinib. Dose-response and cellular growth assays indicate that erlotinib reduces cell proliferation in all tested cell lines without inducing cytotoxic effects. Flow cytometric analyses confirm that EGFR inhibition does not induce apoptosis in glioma cells, leading to cell cycle arrest in G(1). Interestingly, erlotinib also prevents spontaneous multicellular tumour spheroid growth in U87MG cells and cooperates with sub-optimal doses of temozolomide (TMZ) to reduce multicellular tumour spheroid growth. This cooperation appears to be schedule-dependent, since pre-treatment with erlotinib protects against TMZ-induced cytotoxicity whereas concomitant treatment results in a cooperative effect. Cell cycle arrest in erlotinib-treated cells is associated with an inhibition of ERK and Akt signaling, resulting in cyclin D1 downregulation, an increase in p27(kip1) levels and pRB hypophosphorylation. Interestingly, EGFR inhibition also perturbs Rho GTPase signaling and cellular morphology, leading to Rho/ROCK-dependent formation of actin stress fibres and the inhibition of glioma cell motility and invasion.  相似文献   

3.
We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types.  相似文献   

4.
The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D) growth conditions using non-transformed prostate epithelial cells (EP156T), an androgen-sensitive prostate cancer cell line (LNCaP), and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D) growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.  相似文献   

5.
Invadopodia are actin-rich, proteolytic structures that enable cancer cell to invade into the surrounding tissues. Several in vitro invasion assays have been used in the literature ranging from directional quantitative assays to complex three-dimensional (3D) analyses. One of the main limitations of these assays is the lack of quantifiable degradation-dependent invasion in a three-dimensional (3D) environment that mimics the tumor microenvironment. In this article, we describe a new invasion and degradation assay based on the currently available tumor spheroid model that allows long-term high-resolution imaging of the tumor, precise quantification, and visualization of matrix degradation and multichannel immunocytochemistry. By incorporating a degradation marker (DQ-Green BSA) into a basement-membrane matrix, we demonstrate the ability to quantitate cancer cell-induced matrix degradation in 3D. Also, we describe a technique to generate histological sections of the tumor spheroid allowing the detection of invadopodia formation in the 3D tumor spheroid. This new technique provides a clear advantage for studying cancer in vitro and will help address critical questions regarding the dynamics of cancer cell invasion.  相似文献   

6.
The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component—tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies.  相似文献   

7.
Interactions with stromal components influence the growth, survival, spread, and colonization capacities of tumor cells. Fibroblasts and macrophages which are responsible for the stroma production and maintenance are of the basic elements found in tumor microenvironment. Cellular density and ratio of stromal cells to tumor cells can also have modulatory effects in cancer. Here, the contribution of fibroblast and/or macrophage cells on the malignant behavior of breast cancer cells was modeled in co-culture systems. Co-cultures were established at different cell densities and ratios with 4T1 breast cancer, NIH/3T3 or 3T3-L1 fibroblast, and J774A.1 monocyte/macrophage cell lines. Flow cytometry-based proliferation, 3D growth on alginate matrix, and matrigel invasion assays were performed to determine the change in the malignant assets of tumor cells. The data were also supported by immunocytochemical and morphological analyses. Co-culturing with fibroblasts (especially, NIH/3T3 cells) significantly supported the proliferation, scattering, and invasiveness of 4T1 cells whereas inclusion of macrophages disrupted this positive influence. On the other hand, the invasion capacity of 4T1 cells was not enhanced in the co-cultures with fibroblasts whose motility were inhibited with pertussis toxin pretreatment. Particularly at low-density seeding in 3D cultures, 4T1 cells could form substantially more spheroids than that of in the co-cultures with fibroblasts. Only, increasing the amount of fibroblasts could restore the 3D-growth. Intriguingly, co-existence of macrophage, fibroblast, and tumor cells in 3D cultures provided a convenient stroma sustaining the spheroid formation and growth. In conclusion, fibroblasts can form a favorable environment for tumor cells’ spread and motility whereas restricting their 3D-growth capacity. On the other hand, presence of macrophages may disrupt the influence of fibroblasts and enhance the spheroid formation by the tumor cells.  相似文献   

8.
We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted Hs578T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide.  相似文献   

9.
Lin RZ  Lin RZ  Chang HY 《Biotechnology journal》2008,3(9-10):1172-1184
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.  相似文献   

10.
For the invasive migration of tumor cells, at least two mechanisms are currently discussed: (1) the mesenchymal mode depending on extracellular proteolysis and (2) the proteolysis-independent amoeboid mode depending on the activity of the Rho kinase ROCK. The ability of tumor cells to switch between different modes of motility has been shown to limit the efficiency of agents aimed to reduce invasion. Here we show by combining 2D and 3D migration assays that human mammary tumor cells exhibited a strongly reduced migration velocity as compared to their normal counterparts indicating that high invasiveness is not necessarily correlated with high migratory capacity in 2D assays. This reduced migration was apparently due to significant differences in actin organization, decreased persistence of lamellipodia by 50% and increased cell substrate adhesion. These differences resulted from a 2.5-fold higher activity of ROCK and were mediated by its downstream effectors myosin light chain kinase and cofilin. Thus, inhibition of ROCK activity caused a marked increase in 2D migration efficiency by 40%, without, however, affecting 3D invasion. A massive reduction of invasion by 60% was achieved by the simultaneous inhibition of the ROCK-dependent amoeboid and the extracellular proteolysis-dependent mesenchymal mode. These results may point to a new efficient strategy for blocking tumor cell invasion in vivo.  相似文献   

11.
The possibility that a sinusoidal 50 Hz magnetic field with a magnetic flux density of 1 mT can damage MG-63 osteosarcoma spheroids and induce variations in the invasive properties of these three-dimensional model systems after 2 days of exposure was investigated. Specifically, possible damage induced by these fields was examined by determining changes in spheroid surface morphology (light microscopy), growth (spheroid diameter and protein content determination), lactate dehydrogenase release, and reduced glutathione amount. Possible changes in the invasive properties were studied by invasion chambers. The results show no induction of cell damage by ELF fields while invasion chamber assays demonstrate a significant increase in the invasive potential of exposed spheroids. In order to determine if the fibronectin or hyaluronan receptors are involved, Western blot analysis was conducted on these two proteins. No significant variations were observed in either receptor in MG-63 multicellular tumor spheroids.  相似文献   

12.
A modular microscope-based screening platform, with applications in large-scale analysis of protein function in intact cells is described. It includes automated sample preparation, image acquisition, data management and analysis, and the genome-wide automated retrieval of bioinformatic information. The modular nature of the system ensures that it is rapidly adaptable to new biological questions or sets of proteins. Two automated functional assays addressing protein secretion and the integrity of the Golgi complex were developed and tested. This shows the potential of the system in large-scale, cell-based functional proteomic projects.  相似文献   

13.
The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.  相似文献   

14.
We report here a new readily cultured nonadherent hollow spheroidal epithelial tissue model: human nasal epithelial multicellular spheroids, prepared from brushings of human nasal epithelium in vivo. Although cultured cyst-like epithelial models developed from embryonic, transformed, or polypoid tissues have been reported previously, human nasal epithelial multicellular spheroids are derived from normal mature nontransformed human airway epithelial cells. In our studies, spheroids ranged in size from 50 to 700 microns diameter (averaging approximately 250 microns). Cells of the spheroid displayed morphological polarity and formed junctional complexes. Transcellular electrolyte transport may underlie the increase in spheroid size which occurred in culture. The ease and simplicity of the brushing and culture procedures reported here render normal and diseased human cell populations more readily accessible to investigation. We believe human nasal epithelial multicellular spheroids may have important applications in the study of electrolyte and fluid transport processes, ciliary motility, epithelial polarity, cellular metabolism, and drug cytotoxicity in normal and pathophysiological states of the human respiratory tract (e.g., cystic fibrosis).  相似文献   

15.
The gliding motility of the protozoan parasite Toxoplasma gondii and its invasion of cells are powered by an actin-myosin motor. We have studied the spatial distribution and relationship between these two cytoskeleton proteins and calmodulin (CaM), the Ca(2+)-dependent protein involved in invasion by T. gondii. A 3D reconstruction using labeling and tomographic studies showed that actin was present as a V-like structure in the conoidal part of the parasite. The myosin distribution overlapped that of actin, and CaM was concentrated at the center of the apical pole. We demonstrated that the actomyosin network, CaM, and myosin light-chain kinases are confined to the apical pole of the T. gondii tachyzoite. MLCK could act as an intermediate molecule between CaM and the cytoskeleton proteins. We have developed a model of the organization of the actomyosin-CaM complex and the steps of a signaling pathway for parasite motility.  相似文献   

16.
The N-terminal acetyltransferase NatB in Saccharomyces cerevisiae consists of the catalytic subunit Nat3p and the associated subunit Mdm20p. We here extend our present knowledge about the physiological role of NatB by a combined proteomics and phenomics approach. We found that strains deleted for either NAT3 or MDM20 displayed different growth rates and morphologies in specific stress conditions, demonstrating that the two NatB subunits have partly individual functions. Earlier reported phenotypes of the nat3Delta strain have been associated with altered functionality of actin cables. However, we found that point mutants of tropomyosin that suppress the actin cable defect observed in nat3Delta only partially restores wild-type growth and morphology, indicating the existence of functionally important acetylations unrelated to actin cable function. Predicted NatB substrates were dramatically overrepresented in a distinct set of biological processes, mainly related to DNA processing and cell cycle progression. Three of these proteins, Cac2p, Pac10p, and Swc7p, were identified as true NatB substrates. To identify N-terminal acetylations potentially important for protein function, we performed a large-scale comparative phenotypic analysis including nat3Delta and strains deleted for the putative NatB substrates involved in cell cycle regulation and DNA processing. By this procedure we predicted functional importance of the N-terminal acetylation for 31 proteins.  相似文献   

17.
Summary In this report we describe a new apparatus which has been developed for the automated selective dissociation of multicellular spheroids into fractions of viable cells from different locations in the spheroid. This device is based on the exposure of spheroids to a 0.25% solution of trypsin under carefully controlled conditions, such that the cells are released from the outer spheroid surface in successive layers. Study of the spheroid size, number of cells per spheroid, and sections through the spheroid with increasing exposure to trypsin demonstrate the effectiveness of this technique. The technique has been successfully used on spheroids from five different cell lines over a wide range of spheroid diameters. We also present data detailing the effect of varying the dissociation temperature, the mixing speed, the trypsin concentration, and the number of spheroids being dissociated. The new apparatus has several advantages over previous selective dissociation methods and other techniques for isolating cells from different regions in spheroids, including: a) precise control over dissociation conditions, improving reproducibility; b) short time to recover cell fractions; c) ability to isolate large numbers of cells from many different spheroid locations; d) use of common, inexpensive laboratory equipment; and e) easy adaptability to new cell lines or various spheroid sizes. Applications of this method are demonstrated, including the measurement of nutrient consumption rates, regrowth kinetics, and radiation survivals of cells from different spheroid regions. This work was supported by grants CA-36535, CA-22585, and RR-02845 from the National Institutes of Health, Bethesda, MD, the National Flow Cytometry Resource (NIH grant RR-01315), and by the Department of Energy, Washington, DC.  相似文献   

18.
While 3-D tissue models have received increasing attention over the past several decades in the development of traditional anti-cancer therapies, their potential application for the evaluation of advanced drug delivery systems such as nanomedicines has been largely overlooked. In particular, new insight into drug resistance associated with the 3-D tumor microenvironment has called into question the validity of 2-D models for prediction of in vivo anti-tumor activity. In this work, a series of complementary assays was established for evaluating the in vitro efficacy of docetaxel (DTX) -loaded block copolymer micelles (BCM+DTX) and Taxotere® in 3-D multicellular tumor spheroid (MCTS) cultures. Spheroids were found to be significantly more resistant to treatment than monolayer cultures in a cell line dependent manner. Limitations in treatment efficacy were attributed to mechanisms of resistance associated with properties of the spheroid microenvironment. DTX-loaded micelles demonstrated greater therapeutic effect in both monolayer and spheroid cultures in comparison to Taxotere®. Overall, this work demonstrates the use of spheroids as a viable platform for the evaluation of nanomedicines in conditions which more closely reflect the in vivo tumor microenvironment relative to traditional monolayer cultures. By adaptation of traditional cell-based assays, spheroids have the potential to serve as intermediaries between traditional in vitro and in vivo models for high-throughput assessment of therapeutic candidates.  相似文献   

19.
During the unicellular-multicellular transition, there are opportunities and costs associated with larger size. We argue that germ-soma separation evolved to counteract the increasing costs and requirements of larger multicellular colonies. Volvocalean green algae are uniquely suited for studying this transition because they range from unicells to multicellular individuals with germ-soma separation. Because Volvocales need flagellar beating for movement and to avoid sinking, their motility is modeled and analyzed experimentally using standard hydrodynamics. We provide comparative hydrodynamic data of an algal lineage composed of organisms of different sizes and degrees of complexity. In agreement with and extending the insights of Koufopanou, we show that the increase in cell specialization as colony size increases can be explained in terms of increased motility requirements. First, as colony size increases, soma must evolve, the somatic-to-reproductive cell ratio increasing to keep colonies buoyant and motile. Second, increased germ-soma specialization in larger colonies increases motility capabilities because internalization of nonflagellated germ cells decreases colony drag. Third, our analysis yields a limiting maximum size of the volvocalean spheroid that agrees with the sizes of the largest species known. Finally, the different colony designs in Volvocales reflect the trade-offs between reproduction, colony size, and motility.  相似文献   

20.
Abstract

Despite the regenerative capability of bone, treatment of large defects often requires bone grafts. The challenge for bone grafting is to establish rapid and sufficient vascularization. Three-dimensional (3D) multicellular spheroids consisting of the relevant cell types can be used as “mini tissues” to study the complexity of angiogenesis. We investigated two-dimensional (2D) expansion, differentiation and characterization of primary osteoblasts as steps toward the establishment of 3D multicellular spheroids. Supplementation of cell culture medium with vitamin D3 induces the osteocalcin expression of osteoblasts. An increased osteocalcin concentration of 10.8 ± 0.58 ng/ml could be measured after 19 days in supplemented medium. Vitamin D3 has no influence on the expression of alkaline phosphatase or the deposition of calcium. Expression of these additional osteogenic markers requires addition of a cocktail of osteogenic factors that, conversely, have no influence on the expression of osteocalcin. Supplementation of the cell culture medium with both vitamin D3 and a cocktail of osteogenic factors is recommended to produce an osteoblast phenotype that secretes osteocalcin, expresses alkaline phosphatase and deposits calcium. In such a supplemented medium, a mean osteocalcin concentration of 11.63 ± 4.85 ng/ml was secreted by the osteoblasts. Distinguishing osteoblasts and fibroblasts remains a challenge. Neither differentiated nor undifferentiated osteoblasts can be distinguished from fibroblasts by the expression of CD90, ED-A-fibronectin or α-smooth muscle actin; however, these cell types exhibit clear differences in their growth characteristics. Osteoblasts can be arranged as 3D spheroids by coating the bottom of the cell culture device with agarose. The cellular composition of 3D multicellular spheroids can be evaluated quantitatively using vital fluorescence labeling techniques. Spheroids are a promising tool for studying angiogenic and osteogenic phenomena in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号