首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In photodynamic therapy (PDT), a tumor-selective photosensitizer is administered and then activated by exposure to a light source of applicable wavelength. Multidrug resistance (MDR) is largely caused by the efflux of therapeutics from the tumor cell by means of P-glycoprotein (P-gp), resulting in reduced efficacy of the anticancer therapy. This study deals with photodynamic therapy with Photofrin II (Ph II) and hypericin (Hyp) on sensitive and doxorubicin-resistant colon cancer cell lines. Changes in cytosolic superoxide dismutase (SOD1) activity after PDT and the intracellular accumulation of photosensitizers in sensitive and resistant colon cancer cell lines were examined. The photosensitizers' distributions indicate that Ph II could be a potential substrate for P-gp, in contrast to Hyp. We observed an increase in SOD1 activity after PDT for both photosensitizing agents. The changes in SOD1 activity show that photodynamic action generates oxidative stress in the treated cells. P-gp appears to play a role in the intracellular accumulation of Ph II. Therefore the efficacy of PDT on multidrug-resistant cells depends on the affinity of P-gp to the photosensitizer used. The weaker accumulation of photosensitizing agents enhances the antioxidant response, and this could influence the efficacy of PDT.  相似文献   

2.
We have investigated the effect of 13 flavonoid derivatives on [(14)C]paclitaxel transport in two human breast cancer cell lines, the adriamycin-resistant NCI/ADR-RES and sensitive MDA-MB-435. For this study, we selected representatives of aurones, chalcones, flavones, flavonols, chromones, and isoflavones with known binding affinity toward nucleotide-binding domain (NBD2) of P-glycoprotein and for which no reported work is available regarding paclitaxel transport. Aurones CB-284, CB-285, CB-287, and ML-50 most effectively inhibited P-gp related transport in the resistant line in comparison with chalcones, flavones, flavonols, chromones, and isoflavone derivatives and accordingly increased the accumulation of [(14)C]paclitaxel and decreased its efflux. Those agents efficiently modulated paclitaxel transport in P-gp highly expressing resistant human breast cancer cells and they could increase the efficiency of chemotherapy in paclitaxel-resistant tumors. In contrast, the sensitive cell line responded reversely in that CB-284, CB-285, CB-287, and ML-50 significantly inhibited accumulation of [(14)C]paclitaxel and especially CB-287, which significantly stimulated its efflux. Some, but not all, of the data correlated with the binding of flavonoid derivatives to P-gp, and indicated that even in the P-gp highly expressing NCI/ADR-RES cells, the binding was not the only factor influencing the transport of [(14)C]paclitaxel. Opposite effects of flavonoid derivatives on the P-gp highly expressing and MDA-MB-435 non-expressing cell lines indicate that paclitaxel is not only transported by P-gp and let us assume that Mrp2 or ABCC5 seem to be good transport-candidates in these cells. The inhibition of paclitaxel accumulation and stimulation of its efflux are potentially unfavorable for drug therapy and since they could be due to modulation of drug transporters other than P-gp, their expression in tumors is of great significance for efficient chemotherapy.  相似文献   

3.
Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, "non-genetic" acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers.  相似文献   

4.
Overexpression of drug efflux transporters is commonly associated with multidrug-resistance in cancer therapy. Here for the first time, we investigated the ability of diindolylmethane (DIM), a dietary bioactive rich in cruciferous vegetables, in enhancing the efficacy of Centchroman (CC) by modulating the drug efflux transporters in human breast cancer cells. CC is a selective estrogen receptor modulator, having promising therapeutic efficacy against breast cancer. The combination of DIM and CC synergistically inhibited cell proliferation and induced apoptosis in breast cancer cells. This novel combination has also hindered the stemness of human breast cancer cells. Molecular docking analysis revealed that DIM had shown a strong binding affinity with the substrate-binding sites of ABCB1 (P-gp) and ABCC1 (MRP1) drug-efflux transporters. DIM has increased the intracellular accumulation of Hoechst and Calcein, the substrates of P-gp and MRP1, respectively, in breast cancer cells. Further, DIM stimulates P-gp ATPase activity, which indicates that DIM binds at the substrate-binding domain of P-gp, and thereby inhibits its efflux activity. Intriguingly, DIM enhanced the intracellular concentration of CC by inhibiting the P-gp and MRP1 expression as well as activity. The intracellular retaining of CC has increased its efficacy against breast cancer. Overall, DIM, a dietary bioactive, enhances the anticancer efficiency of CC through modulation of drug efflux ABC-transporters in breast cancer cells. Therefore, DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy against human breast cancer.  相似文献   

5.
The decrease of the intracellular concentration of drug in resistant cell as compared to sensitive cells is, in most of cases, correlated with the presence, in the membrane of resistant cells, of a 170-kDA P-glycoprotein (P-gp) responsible for an active efflux of the drug. The fluorescence emission spectra from anthracycline-treated cells suspended in buffer have been used to follow the P-gp-associated efflux of these drugs in the absence or presence of verapamil. In the present study, 4′-o-tetrahydro-pyranyladriamycin (THP-adriamycin) was used. Two different methods were used to determined the kinetics of active efflux of THP-adriamycin: (1) at the steady-state, (2) directly, after the addition of glucose to cells first incubated with THP-adriamycin in the presence of N3? and in the absence of glucose. Kinetic analysis indicates: (1) a saturation of the active efflux when the cytosolic free drug concentration increased (the Michaelis constant Km = 0.5 ± 0.3 μM) and (2) that the inhibitory effect of verapamil on P-gp associated efflux of THP-adriamycin in living cells in living cells is non-competitive.  相似文献   

6.
We developed surface proteome signatures (SPS) for identification of new biomarkers playing a role in cancer drug resistance. SPS compares surface antigen expression of different cell lines by immunocytochemistry of a phage display antibody library directed to surface antigens of HT1080 fibrosarcoma cells. We applied SPS to compare the surface proteomes of two epithelial derived cancer cell lines, MCF7 and NCI/ADR-RES, which is drug resistant because of overexpression of the P-glycoprotein (P-gp) drug efflux pump. Surface proteomic profiling identified CD44 as an additional biomarker that distinguishes between these two cell lines. CD44 immunohistochemistry can distinguish between tumors derived from these lines and predict tumor response to doxorubicin in vivo. We further show that CD44 plays a role in drug resistance, independently of P-gp, in NCI/ADR-RES cells and increases expression of the antiapoptotic protein Bcl-xL. Our findings illustrate the utility of SPS to distinguish between cancer cell lines and their derived tumors and identify novel biomarkers involved in drug resistance.  相似文献   

7.
P-glycoprotein (P-gp) is one of the cell membrane pumps which mediate the efflux of molecules such as anticancer drugs to the extracellular matrix of tumor cells. P_gp is a member of the ATP-binding cassette (ABC) transporter family that is implicated in cancer multidrug resistance (MDR). Since MDR is a contributor to cancer chemotherapy failure, modulation of efflux pumps is a viable therapeutic strategy. In this study, new synthetic 1,4 dihydropiridine (DHP) derivatives containing thiophenyl substitution were tested as inhibitors of P-gp. Efflux assay was conducted to evaluate the intracellular accumulation of Rhodamine123 (Rh123) as a pump substrate. MTT assay, cell cycle analysis and in silico methods were also examined. Flow cytometric analysis revealed that synthetic DHP derivatives (15 µM) increased intracellular concentration of the substrate by 2–3 folds compared with verapamil as a standard P-gp inhibitor. MTT assay on EPG85-257P and its drug-resistant EPG85-257RDB cell line revealed antitumor effects (30–45%) for new DHP derivatives at 15 µM following 72 h incubation. However, MTT test on normal cell line showed negligible toxic effects. Finally combination of synthetic derivatives with doxorubicin showed that these compounds decrease IC50 of doxorubicin in resistant cell lines from 9 to 1.5 µM. Sub-G1 peak-related apoptotic cells showed a stronger effect of synthetic compounds at 5 µM compared with verapamil. Molecular dynamic results showed a high binding affinity between DHP derivative and protein at drug binding site. Findings of these biological tests indicated the antitumor activity and P-gp inhibitory effects of new 1,4-DHP derivatives.  相似文献   

8.
Acquired multidrug resistance of cancer cells challenges the chemotherapeutic interventions. To understand the role of molecular chaperone, Hsp90 in drug adapted tumor cells, we have used in vitro drug adapted epidermoid tumor cells as a model system. We found that chemotherapeutic drug adaptation of tumor cells is mediated by induced activities of both Hsp90 and P-glycoprotein (P-gp). Although the high-affinity conformation of Hsp90 has correlated with the enhanced drug efflux activity, we did not observe a direct interaction between P-gp and Hsp90. The enrichment of P-gp and Hsp90 at the cholesterol-rich membrane microdomains is found obligatory for enhanced drug efflux activity. Since inhibition of cholesterol biosynthesis is not interfering with the drug efflux activity, it is presumed that the net cholesterol redistribution mediated by Hsp90 regulates the enhanced drug efflux activity. Our in vitro cholesterol and Hsp90 interaction studies have furthered our presumption that Hsp90 facilitates cholesterol redistribution. The drug adapted cells though exhibited anti-proliferative and anti-tumor effects in response to 17AAG treatment, drug treatment has also enhanced the drug efflux activity. Our findings suggest that drug efflux activity and metastatic potential of tumor cells are independently regulated by Hsp90 by distinct mechanisms. We expose the limitations imposed by Hsp90 inhibitors against multidrug resistant tumor cells.  相似文献   

9.
Photodynamic therapy (PDT) employing methyl δ-aminolevulinic acid (Me-ALA), as a precursor of the photosensitizer protoporphyrin IX (PpIX), is used for the treatment of non melanoma cutaneous cancer (NMCC). However, one of the problems of PDT is the apparition of resistant cell populations. The aim of this study was to isolate and characterize squamous carcinoma cells SCC-13 resistant to PDT with Me-ALA. The SCC-13 parental population was submitted to successive cycles of Me-ALA-PDT and 10 resistant populations were finally obtained. In parental and resistant cells there were analyzed the cell morphology (toluidine blue), the intracellular PpIX content (flow cytometry) and its localization (fluorescence microscopy), the capacity of closing wounds (scratch wound assay), the expression of cell-cell adhesion proteins (E-cadherin and β-catenin), cell-substrate adhesion proteins (β1-integrin, vinculin and phospho-FAK), cytoskeleton proteins (α-tubulin and F-actin) and the inhibitor of apoptosis protein survivin, in the activated form as phospho-survivin (indirect immunofluorescence and Western blot). The results obtained indicate that resistant cells showed a more fibroblastic morphology, few differences in intracellular content of the photosensitizer, higher capacity of closing wounds, higher number of stress fibers, more expression of cell-substrate adhesion proteins and higher expression of phospho-survivin than parental cells. These distinctive features of the resistant cells can provide decisive information to enhance the efficacy of Me-ALA applications in clinic dermatology.  相似文献   

10.
Microparticles (MPs) play a vital role in cell communication by facilitating the horizontal transfer of cargo between cells. Recently, we described a novel “non-genetic” mechanism for the acquisition of multidrug resistance (MDR) in cancer cells by intercellular transfer of functional P-gp, via MPs. MDR is caused by the overexpression of the efflux transporters P-glycoprotein (P-gp) and Multidrug Resistance-Associated Protein 1 (MRP1). These transporters efflux anticancer drugs from resistant cancer cells and maintain sublethal intracellular drug concentrations. By conducting MP transfer experiments, we show that MPs derived from DX breast cancer cells selectively transfer P-gp to malignant MCF-7 breast cells only, in contrast to VLB100 leukaemic cell-derived MPs that transfer P-gp and MRP1 to both malignant and non-malignant cells. The observed transfer selectivity is not the result of membrane restrictions for intercellular exchange, limitations in MP binding to recipient cells or the differential expression of the cytoskeletal protein, Ezrin. CD44 (isoform 10) was found to be selectively present on the breast cancer-derived MPs and not on leukaemic MPs and may contribute to the observed selective transfer of P-gp to malignant breast cells observed. Using the MCF-7 murine tumour xenograft model we demonstrated the stable transfer of P-gp by MPs in vivo, which was found to localize to the tumour core as early as 24 hours post MP exposure and to remain stable for at least 2 weeks. These findings demonstrate a remarkable capacity by MPs to disseminate a stable resistant trait in the absence of any selective pressure.  相似文献   

11.
Multi-drug resistance of breast cancer is a major obstacle in chemotherapy of cancer treatments. Recently it was suggested that photodynamic therapy (PDT) can overcome drug resistance of tumors. ALA-PDT is based on the administration of 5-aminolevulinic acid (ALA), the natural precursor for the PpIX biosynthesis, which is a potent natural photosensitizer. In the present study we used the AlaAcBu, a multifunctional ALA-prodrug for photodynamic inactivation of drug resistant MCF-7/DOX breast cancer cells. Supplementation of low doses (0.2mM) of AlaAcBu to the cells significantly increased accumulation of PpIX in both MCF-7/WT and MCF-7/DOX cells in comparison to ALA, or ALA + butyric acid (BA). In addition, our results show that MCF-7/DOX cells are capable of producing higher levels of porphyrins than MCF-7/WT cells due to low expression of the enzyme ferrochelatase, which inserts iron into the tetra-pyrrol ring to form the end product heme. Light irradiation of the AlaAcBu treated cells activated efficient photodynamic killing of MCF-7/DOX cells similar to the parent MCF-7/WT cells, depicted by low mitochondrial enzymatic activity, LDH leakage and decreased cell survival following PDT. These results indicate that the pro-drug AlaAcBu is an effective ALA derivative for PDT treatments of multidrug resistant tumors.  相似文献   

12.
Multidrug resistance (MDR) mediated by the over expression of drug efflux protein P-glycoprotein (P-gp) is one of the major impediments to successful treatment of cancer. P-gp acts as an energy-dependent drug efflux pump and reduces the intracellular concentration of structurally unrelated drugs inside the cells. Therefore, there is an urgent need for development of new molecules that are less toxic to normal cell and preferentially effective against drug resistant malignant cells. In this preclinical study we report the apoptotic potential of copper N-(2-hydroxyacetophenone) glycinate (CuNG) on doxorubicin resistant T lymphoblastic leukaemia cells (CEM/ADR5000). To evaluate the cytotoxic effect of CuNG, we used different normal cell lines (NIH 3T3, Chang liver and human PBMC) and cancerous cell lines (CEM/ADR5000, parental sensitive CCRF-CEM, SiHa and 3LL) and conclude that CuNG preferentially kills cancerous cells, especially both leukemic cell types irrespective of their MDR status, while leaving normal cell totally unaffected. Moreover, CuNG involves reactive oxygen species (ROS) for induction of apoptosis in CEM/ADR5000 cells through the intrinsic apoptotic pathway. This is substantiated by our observation that antioxidant N-acetyle-cysteine (NAC) and PEG catalase could completely block ROS generation and, subsequently, abrogates CuNG induced apoptosis. On the other hand, uncomplexed ligand N-(2-hydroxyacetophenone) glycinate (NG) fails to generate a significant amount of ROS and concomitant induction of apoptosis in CEM/ADR5000 cells. Therefore, CuNG induces drug resistant leukemia cells to undergo apoptosis and proves to be a molecule having therapeutic potential to overcome MDR in cancer.  相似文献   

13.
P-glycoprotein (P-gp) can induce multidrug resistance (MDR) through the ATP-dependent efflux of chemotherapeutic agents. We have previously shown that P-gp can inhibit nondrug apoptotic stimuli by suppressing the activation of caspases. To determine if this additional activity is functionally linked to ATP hydrolysis, we expressed wild-type and ATPase-mutant P-gp and showed that cells expressing mutant P-gp could not efflux chemotherapeutic drugs but remained relatively resistant to apoptosis. CEM lymphoma cells expressing mutant P-gp treated with vincristine showed a decrease in the fraction of cells with apoptotic morphology, cytochrome c release from the mitochondria and suppression of caspase activation, yet still accumulated in mitosis and showed a loss of clonogenic potential. The loss of clonogenicity in vincristine-treated cells expressing mutant P-gp was associated with accumulation of cells in mitosis and the presence of multinucleated cells consistent with mitotic catastrophe. The antiapoptotic effect of mutant P-gp was not affected by antibodies that inhibit the efflux function of the protein. These data are consistent with a dual activity model for P-gp-induced MDR involving both ATPase-dependent drug efflux and ATPase-independent inhibition of apoptosis. The structure-function analyses described herein provide novel insight into the mechanisms of action of P-gp in mediating MDR.  相似文献   

14.
Hypericin in cancer treatment: more light on the way   总被引:16,自引:0,他引:16  
Photodynamic therapy (PDT) has been described as a promising new modality for the treatment of cancer. PDT involves the combination of a photosensitizing agent (photosensitizer), which is preferentially taken up and retained by tumor cells, and visible light of a wavelength matching the absorption spectrum of the drug. Each of these factors is harmless by itself, but when combined they ultimately produce, in the presence of oxygen, cytotoxic products that cause irreversible cellular damage and tumor destruction. Hypericin, a powerful naturally occurring photosensitizer, is found in Hypericum perforatum plants, commonly known as St. John's wort. In recent years increased interest in hypericin as a potential clinical anticancer agent has arisen since several studies established its powerful in vivo and in vitro antineoplastic activity upon irradiation. Investigations of the molecular mechanisms underlying hypericin photocytotoxicity in cancer cells have revealed that this photosensitizer can induce both apoptosis and necrosis in a concentration and light dose-dependent fashion. Moreover, PDT with hypericin results in the activation of multiple pathways that can either promote or counteract the cell death program. This review focuses on the more recent advances in the use of hypericin as a photodynamic agent and discusses the current knowledge on the signaling pathways underlying its photocytotoxic action.  相似文献   

15.
《Phytomedicine》2014,21(8-9):1110-1119
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy.  相似文献   

16.
A kinetic study of Rhodamine123 pumping by P-glycoprotein   总被引:1,自引:0,他引:1  
The MDR1 P-glycoprotein (P-gp) actively extrudes a wide variety of structurally diverse cytotoxic compounds out of the cell, is widely expressed in the epithelial cells of kidney, liver and intestine, and in the endothelial cells of brain and placenta, and plays an important role in drug resistance. We measured the accumulation of Rhodamine 123 (Rho123), a substrate of P-gp, into a drug sensitive and a drug resistant strain of the human leukemia cell line K562, as function of Rho123 concentration. With the aid of a mathematical transformation, we used the accumulation of Rho123 into the sensitive cells as a surrogate measure for the internal concentration of the probe in the resistant cells, and were thus able to measure the kinetic parameters of drug efflux pumping by P-gp. Drug pumping was half-saturated at an external Rho123 concentration of 7.2E-06+/-1.1E-06 M, and displayed a co-operative behaviour with a Hill number of 1.94+/-0.32. Verapamil could be shown to inhibit Rho123 efflux uncompetitively.  相似文献   

17.

Background  

Cancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp) is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations.  相似文献   

18.
《Phytomedicine》2008,15(9):754-758
Multidrug resistance (MDR) can limit efficacy of chemotherapy. The best studied mechanism involves P-gp (P-glycoprotein) mediated drug efflux. This study focuses on MDR reversal agents from medicinal plants, which can interfere with P-gp. Rhodamine 123 accumulation assay and flow cytometry analysis were employed to screen for P-gp dependant efflux inhibitors. Lobeline, a piperidine alkaloid from Lobelia inflata and several other Lobelia species, inhibited P-gp activity. MDR reversal potential of lobeline could be demonstrated in cells treated with doxorubicin in that lobeline can sensitize resistant tumor cells at non-toxic concentrations. However, lobeline cannot block BCRP (Breast Cancer Resistance Protein) dependent mitoxantrone efflux. Lobeline could be a good candidate for the development of new MDR reversal agents.  相似文献   

19.
Photodynamic therapy is an approved treatment for several types of tumors and certain benign diseases, based on the use of a light-absorbing compound (photosensitizer) and light irradiation. In the presence of molecular oxygen, light-activation of the photosensitizer, which accumulates in cancer tissues, leads to the local production of reactive oxygen species that kill the tumor cells. Mitochondria are central coordinators of the mechanisms by which PDT induces apoptosis in the target cells. Recent studies indicate that concomitant to the permeabilization of the outer mitochondrial membrane (which leads to the release of several apoptogenic factors in the cytosol and to the activation of effector caspases), regulatory signaling pathways are activated in a photosensitizer, PDT dose and cell-dependent fashion. Signaling pathways regulated by members of mitogen activated protein kinases and their downstream targets, such as cyclooxygenase-2, appear to critically modulate cancer cell sensitivity to PDT. Understanding the molecular events that contribute to PDT-induced apoptosis, and how cancer cells can evade apoptotic death, should enable a more rationale approach to drug design and therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号