首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roles played by nonfatal secretions of adult anurans in the avoidance of predation remain unknown. The adult Wrinkled frog (Rana rugosa) has warty skin with the odorous mucus secretion that is not fatal to the snake Elaphe quadrivirgata. We fed R. rugosa or Fejervarya limnocharis, which resembles R. rugosa in appearance and has mucus secretion, to snakes and compared the snakes’ responses to the frogs. Compared to F. limnocharis, R. rugosa was less frequently bitten or swallowed by snakes. The snakes that bit R. rugosa spat out the frogs and showed mouth opening (gaping) behavior, while the snakes that bit F. limnocharis did not show gaping behavior. We also compared the responses of the snakes to R. rugosa and F. limnocharis secretions. We coated palatable R. japonica with secretions from R. rugosa or F. limnocharis. The frogs coated by R. rugosa secretion were less frequently bitten or swallowed than those coated by F. limnocharis secretion. We concluded that compared to different frog species of similar sizes, the adult R. rugosa was less frequently preyed upon by, and that its skin secretion was effective in avoiding predation by snakes.  相似文献   

2.
Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution.  相似文献   

3.
Nanos is expressed in the primordial germ cells (PGCs) and also the germ cells of a variety of organisms as diverse as Drosophila, medaka fish, Xenopus and mouse. In Nanos3‐deficient mice, PGCs fail to incorporate into the gonad and the size of the testis and ovary is thereby dramatically reduced. To elucidate the role of Nanos in an amphibian species, we cloned Nanos3 cDNA from the testis of the R. rugosa frog. RT‐PCR analysis showed strong expression of Nanos3 mRNA in the testis of adult R. rugosa frogs, but expression was not sexually dimorphic during gonadal differentiation. In Nanos3‐knockdown tadpoles produced by the CRISPR/Cas9 system, the number of germ cells decreased dramatically in the gonads of both male and female tadpoles before sex determination and thereafter. This was confirmed by three dimensional imaging of wild‐type and Nanos3 knockdown gonads using serial sections immunostained for Vasa, a marker specific to germ cells. Taken together, these results suggest that Nanos3 protein function is conserved between R. rugosa and mouse.  相似文献   

4.
Two different types of sex chromosomes, XX/XY and ZZ/ZW, exist in the Japanese frog Rana rugosa. They are separated in two local forms that share a common origin in hybridization between the other two forms (West Japan and Kanto) with male heterogametic sex determination and homomorphic sex chromosomes. In this study, to find out how the different types of sex chromosomes differentiated, particularly the evolutionary reason for the heterogametic sex change from male to female, we performed artificial crossings between the West Japan and Kanto forms and mitochondrial 12S rRNA gene sequence analysis. The crossing results showed male bias using mother frogs with West Japan cytoplasm and female bias using those with Kanto cytoplasm. The mitochondrial genes of ZZ/ZW and XX/XY forms, respectively, were similar in sequence to those of the West Japan and Kanto forms. These results suggest that in the primary ZZ/ZW form, the West Japan strain was maternal and thus male bias was caused by the introgression of the Kanto strain while in the primary XX/XY form and vice versa. We therefore hypothesize that sex ratio bias according to the maternal origin of the hybrid population was a trigger for the sex chromosome differentiation and the change of heterogametic sex.  相似文献   

5.
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.  相似文献   

6.
7.
Sex chromosomes are classically predicted to stop recombining in the heterogametic sex, thereby enforcing linkage between sex-determining (SD) and sex-antagonistic (SA) genes. With the same rationale, a pre-existing sex asymmetry in recombination is expected to affect the evolution of heterogamety, for example, a low rate of male recombination might favor transitions to XY systems, by generating immediate linkage between SD and SA genes. Furthermore, the accumulation of deleterious mutations on nonrecombining Y chromosomes should favor XY-to-XY transitions (which discard the decayed Y), but disfavor XY-to-ZW transitions (which fix the decayed Y as an autosome). Like many anuran amphibians, Hyla tree frogs have been shown to display drastic heterochiasmy (males only recombine at chromosome tips) and are typically XY, which seems to fit the above expectations. Instead, here we demonstrate that two species, H. sarda and H. savignyi, share a common ZW system since at least 11 Ma. Surprisingly, the typical pattern of restricted male recombination has been maintained since then, despite female heterogamety. Hence, sex chromosomes recombine freely in ZW females, not in ZZ males. This suggests that heterochiasmy does not constrain heterogamety (and vice versa), and that the role of SA genes in the evolution of sex chromosomes might have been overemphasized.  相似文献   

8.
Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.  相似文献   

9.
Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover.  相似文献   

10.
11.
12.
Sex determination and dosage compensation in Drosophila are implemented by the ratio of X-chromosomes to sets of autosomes (X:A ratio). Our aim was to change this X:A ratio during development, and to assess the response of the affected cells in sexually dimorphic structures. For this purpose, clones of XO constitution were produced in female embryos and larvae of two genotypes in which almost the entire euchromatic arm of one X-chromosome was translocated to the third chromosome. Genotype I was heterozygous for the X-linked recessive mutations SxlfLS, genotype II was homozygous for Sxl+. The Sxl+ gene (sex-lethal) is involved in mediating sex determination and dosage compensation. In genotype I (SxlfLS), male clones could be generated up to 48 h in genitalia and analia, up to 72 h in the sex comb region and up to 96 h in 5th and 6th tergites. In genotype II (Sxl+), male clones only appeared in the tergites, and only up to 24 h. The difference in these results is ascribed to the presence of SxlfLS in genotype I: when homozygous, this mutation causes XX clones to differentiate male structures; most of the male clones produced in genotype I must therefore be XX. In contrast, male clones produced in genotype II must be XO. Since these were only found when generated in embryos we conclude that the X:A ratio expresses itself autonomously in clones by setting the state of activity of the Sxl gene around blastoderm stage. Once this is achieved, the X:A signal is no longer needed, and the state of activity of the Sxl+ gene determines sex and dosage compensation.  相似文献   

13.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   

14.
Hens,cocks and avian sex determination: A quest for genes on Z or W?   总被引:11,自引:0,他引:11       下载免费PDF全文
Ellegren H 《EMBO reports》2001,2(3):192-196
The sex of an individual is generally determined genetically by genes on one of the two sex chromosomes. In mammals, for instance, the presence of the male-specific Y chromosome confers maleness, whereas in Drosophila melanogaster and Caenorhabditis elegans it is the number of X chromosomes that matters. For birds (males ZZ, females ZW), however, the situation remains unclear. The recent discovery that the Z-linked DMRT1 gene, which is conserved across phyla as a gene involved in sexual differentiation, is expressed early in male development suggests that it might be the number of Z chromosomes that regulate sex in birds. On the other hand, the recent identification of the first protein unique to female birds, encoded by the W-linked PKCIW gene, and the observation that it is expressed early in female gonads, suggests that the W chromosome plays a role in avian sexual differentiation. Clearly defining the roles of the DMRT1 and PKC1W genes in gonadal development, and ultimately determining whether avian sex is dependent on Z or W, will require transgenic experiments.  相似文献   

15.
The objective of this study was to clarify the course of inversions by which a ZW sex chromosome dimorphism has become established in Rana rugosa. Fortunately, R. rugosa preserves three different forms of sex chromosomes in the several isolated populations. In both males and females, the homomorphic sex chromosomes from Hiroshima were closely similar to Z, while those from Isehara were slightly different from the Z. Females from Hirosaki demonstrated heteromorphic sex chromosomes. In this study, the configuration and pairing behavior of sex lampbrush chromosomes were examined in the female offspring produced from a cross between a female from Hiroshima and a male from Isehara, as well as the female offspring of a female from Hirosaki and the male from Isehara. For the sex lampbrush chromosomes from Hiroshima and Isehara, chiasmata were exclusively formed between the distal regions of the long arms of one sex chromosome and the terminal regions of the short arms of the other. As a result, landmarks arranged in reverse order were observed in the achiasmatic regions of these chromosomes. For the sex lampbrush chromosomes from Isehara and Hirosaki, on the other hand, chiasma formation was mainly confined to the lower half of the chromosomes corresponding to the long arms, and the landmarks in the achiasmatic regions of these chromosomes were disposed in the opposite direction to each other. These results seem to indicate that in the primitive sex chromosomes of the Hiroshima type two pericentric inversions occurred, leading to the differentiation of the W chromosomes. This is the first report to substantiate the process of sex chromosome differentiation experimentally. Received: 10 November 1996; in revised form: 22 April 1997 / Accepted: 24 April 1997  相似文献   

16.
Mating disruption of the carpenter moth, Cossus insularis Staudinger (Lepidoptera: Cossidae), with a synthetic version of its sex pheromone, a mixture of (E)-3-tetradecenyl acetate and (Z)-3-tetradecenyl acetate, was tested for three successive years in Japanese pear (Pyrus pyrifolia var. culta) orchards. Pheromone trap catches, percentage mating of tethered females, and tree damage were measured in both the pheromone-treated and untreated control orchards. The attraction of male adults to pheromone traps was completely disrupted, and the mating of the tethered females was completely inhibited by the treatment of synthetic pheromones. The percentage of damaged trees in the pheromone-treated orchard decreased over the course of the experiment, while the damage percentage did not decrease in the untreated orchard. These results show that mating disruption with the synthetic sex pheromone is promising for the reduction of damage caused by C. insularis in apple and Japanese pear orchards.  相似文献   

17.
18.
19.
We report here that (4R,9Z)-hexadec-9-en-4-olide [(R)-desmolactone] is a sex attractant or sex pheromone for multiple species and subspecies in the cerambycid genus Desmocerus. This compound was previously identified as a female-produced sex attractant pheromone of Desmocerus californicus californicus. Headspace volatiles from female Desmocerus aureipennis aureipennis contained (R)-desmolactone, and the antennae of adult males of two species responded strongly to synthetic (R)-desmolactone in coupled gas chromatography-electroantennogram analyses. In field bioassays in California, Oregon, and British Columbia, traps baited with synthetic (R)-desmolactone captured males of several Desmocerus species and subspecies. Only male beetles were captured, indicating that this compound acts as a sex-specific attractant, rather than as a signal for aggregation. In targeted field bioassays, males of the US federally threatened subspecies Desmocerus californicus dimorphus responded to the synthetic attractant in a dose dependent manner. Our results represent the first example of a “generic” sex pheromone used by multiple species in the subfamily Lepturinae, and demonstrate that pheromone-baited traps may be a sensitive and efficient method of monitoring the threatened species Desmocerus californicus dimorphus, commonly known as the valley elderberry longhorn beetle.  相似文献   

20.
Chromosome analyses of common Indian Krait, B. caeuleus from three geographical regions of India have revealed variable diploid numbers of 43, 44 and 45 in different female individuals but a constant diploid number of 44 in the males. C-banding and in situ hybridization studies, using radio labelled W sex chromosome specific satellite DNA as a probe, have shown that C-banding and sex chromosome associated satellite DNA's are exclusively localised in the W chromosome. The W chromosome is involved in reciprocal translocations either with a medium sized macroautosome or with a microchromosome resulting in a multiple sex chromosome constitution of Z1Z1Z2Z2/Z1Z2W type. In some female individuals dissociation of the W has resulted in multiple W chromosomes, W1 and W2. These polymorphisms are uniquely confined to the female sex only. A predominance of polymorphic females, involving particularly the translocation of a medium sized macrochromosome, in all three geeographical regions and the restriction of the females having the original chromosome constitution (ZW) to one geographical region suggests that polymorphic individuals have adaptive flexibility and higher fecundity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号