共查询到20条相似文献,搜索用时 15 毫秒
1.
Fary M. Cachelin Ruth H. Striegel-Moore Katherine A. Elder 《Obesity (Silver Spring, Md.)》1998,6(1):62-68
Recently, a shift in obesity treatment away from emphasizing ideal weight loss goals to establishing realistic weight loss goals has been proposed; yet, what constitutes “realistic” weight loss for different populations is not clear. This study examined notions of realistic shape and weight as well as body size assessment in a large community-based sample of African-American, Asian, Hispanic, and white men and women. Participants were 1893 survey respondents who were all dieters and primarily overweight. Groups were compared on various variables of body image assessment using silhouette ratings. No significant race differences were found in silhouette ratings, nor in perceptions of realistic shape or reasonable weight loss. Realistic shape and weight ratings by both women and men were smaller than current shape and weight but larger than ideal shape and weight ratings. Compared with male dieters, female dieters considered greater weight loss to be realistic. Implications of the findings for the treatment of obesity are discussed. 相似文献
2.
Margarita M. López-Uribe Stephen J. Morreale Christine K. Santiago Bryan N. Danforth 《PloS one》2015,10(5)
Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators. 相似文献
3.
Given the budgetary restrictions on scientific research and the increasing need to better inform conservation actions, it is important to identify the patterns and causes of biases in research effort. We combine bibliometric information from a literature review of almost 16,500 peer-reviewed publications on a well-known group of 286 species, the Order Carnivora, with global datasets on species'' life history and ecological traits to explore patterns in research effort. Our study explores how species'' characteristics influenced the degree to which they were studied (measured as the number of publications). We identified a wide variation in intensity of research effort at both Family and Species levels, with some of the least studied being those which may need protection in future. Our findings hint at the complex role of human perspectives in setting research agendas. We found that better-studied species tended to be large-bodied and have a large geographic range whilst omnivory had a negative relationship with research effort. IUCN threat status did not exhibit a strong relationship with research effort which suggests that the conservation needs of individual species are not major drivers of research interest. This work is the first to use a combination of bibliometric analysis and biological data to quantify and interpret gaps in research knowledge across an entire Order. Our results could be combined with other resources, such as Biodiversity Action Plans, to prioritise and co-ordinate future research effort, whilst our methods can be applied across many scientific disciplines to describe knowledge gaps. 相似文献
4.
Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. 相似文献
5.
Scale dependent patterns of body size frequency distributions (BSFDs) have been explained by competition and an evolutionarily
optimal body size in mammals. We test these ideas in a vertebrate group that is a model for competition and evolutionary studies
by assessing the scale-dependence of BSFDs. BSFDs (body size defined as maximum total length) of North American squamates
were assembled for the entire continent, biomes within the continent and local habitat patches within biomes. We described
these distributions using skewness, kurtosis, interquartile range (IQR), and an index of evenness. We compared these parameters
among spatial scales using Kolmogorov–Smirnov tests and bootstrap simulations. We assessed the relationship between body size
and species richness using correlations (Pearsons and Spearmans R). The North American BSFD is bimodal, with a primary mode
(240 mm) corresponding to lizards and small snakes and a secondary mode (912 mm) to snakes. Squamate BSFDs varied in a scale
dependent fashion for some biomes and local habitat patches for kurtosis (12% of local patches and 10% of biomes more platykurtic),
skewness (30% of biomes skewed to the right) and IQR (12% of patches increased). The index of evenness of BSFDs did not vary
with spatial scale. Body size of biomes and local habitat patches closely resembles the North American BSFD as species richness
increases. We found limited statistical support for the scale-dependency of North American squamate BSFDs (only 12–30% of
patches or biomes conformed to the predicted pattern). These results suggest that the mechanisms implicated in scale-dependent
patterns of BSFDs for mammals, geographic turnover of modal-sized species and competition within local assemblages may be
of diminished importance in squamates. As geographic turnover of modal-sized species is theoretically linked to an evolutionarily
optimal body size, this may suggest that optimal size theory is not adequate to predict spatial scaling of BSFDs in squamates. 相似文献
6.
Xiaoxi Guan Tao Xu Song Gao Mingfang Qi Yanling Wang Xin Liu Tianlai Li 《Journal of Plant Growth Regulation》2014,33(2):317-327
Abscission facilitates growth and reproduction and improves plant defenses against pathogens. This tightly regulated process is triggered by environmental cues and hormones such as ethylene and auxin. Because auxin is crucial for abscission, auxin response factors (ARFs) may play important roles in this process. Here, we examined changes in gene expression during abscission in tomato, focusing on regulation of genes encoding ARFs. Specifically, we analyzed the pattern of ARF gene expression in tomato flower pedicel explants treated with ethylene, the ethylene blocker 1-methylcyclopropene (1-MCP), or auxin to determine how auxin and ethylene affect ARF gene expression. In addition, we examined the spatial and temporal distribution of IAA during abscission by examining transgenic tomato plants expressing an IAA-inducible promoter fused to the GUS reporter gene (the P5::GUS ‘Chico III’ line). Flower removal from the explants quickly induced abscission by ethylene, which was inhibited by exogenous auxin or 1-MCP. During early abscission, auxin (or 1-MCP) regulated the expression of various ARFs, including ARF1, 2, 3, 4, 5, 7, 8-1, 9, 11, 12, 13, 13-1, 14, and 17, whereas ethylene had the opposite effect on most of these genes. Further analysis shows that during this stage, auxin may mediate the expression of ARF8-1, 9, 11, 12, 13, 13-1, and 14, whereas ethylene may mediate ARF13-1. During the later stage of abscission, ARF2, 8, 10, 11, and 19 were upregulated, and 8-1, 12, 13, and 13-1 were downregulated, compared with nonabscising parts of plants. Fluorometric GUS analysis indicated that GUS activity in the abscission zone remained stable at 4 h and sharply decreased after 8 h until abscission was complete (32 h). 相似文献
7.
Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. 相似文献
8.
Claudia M. Rauter Michael J. Mcguire Melissa M. Gwartney Jason E. Space 《Ethology : formerly Zeitschrift fur Tierpsychologie》2010,116(2):120-128
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy. 相似文献
9.
Amanda H. Korstjens Julia Lehmann R. I. M. Dunbar 《International journal of primatology》2018,39(4):511-531
To understand how species will respond to environmental changes, it is important to know how those changes will affect the ecological stress that animals experience. Time constraints can be used as indicators of ecological stress. Here we test whether time constraints can help us understand group sizes, distribution patterns, and community sizes of forest guenons (Cercopithecus/Allochrocebus). Forest guenons typically live in small to medium sized one-male–multifemale groups and often live in communities with multiple forest guenon species. We developed a time-budget model using published data on time budgets, diets, body sizes, climate, and group sizes to predict maximum ecologically tolerable group and community sizes of forest guenons across 202 sub-Saharan African locations. The model correctly predicted presence/absence at 83% of these locations. Feeding-foraging time (an indicator of competition) limited group sizes, while resting and moving time constraints shaped guenon biogeography. Predicted group sizes were greater than observed group sizes but comparable to community sizes, suggesting community sizes are set by competition among guenon individuals irrespective of species. We conclude that time constraints and intraspecific competition are unlikely to be the main determinants of relatively small group sizes in forest guenons. Body mass was negatively correlated with moving time, which may give larger bodied species an advantage over smaller bodied species under future conditions when greater fragmentation of forests is likely to lead to increased moving time. Resting time heavily depended on leaf consumption and is likely to increase under future climatic conditions when leaf quality is expected to decrease. 相似文献
10.
The sizes of organisms are determined by their interactions with their environment and related ecological and evolutionary
processes. Recent studies of body size distributions across communities show evidence for multimodality. The multiple modes
were originally explained as a consequence of textural discontinuities in habitat structure. Because communities consist of
species that are drawn from lineages, body size patterns within lineages will affect those that are expressed in communities.
We used a cellular automation model to argue that multimodality in body sizes within lineages can arise from a few fundamental
evolutionary mechanisms alone. We tested the hypothesis using body size data for 138 fish genera and found strong support
for the idea that evolution structures body size distributions. The results suggest, first, that we should expect the distribution
of body sizes within lineages to be multimodal and second, that a coherent theory of community body size distributions will
need to combine both evolutionary and ecological perspectives.
Received 28 January 2002; accepted 21 March 2002 相似文献
11.
12.
Morphological analysis of flowers was carried out in Arabidopsis thaliana wild type plants and agamous and apetala2 mutants. No direct substitution of organs takes place in the mutants, since the number and position of organs in them do not correspond to the structure of wild type flower. In order to explain these data, a notion of spatial pattern formation in the meristem was introduced, which preceded the processes of appearance of organ primordia and formation of organs. Zones of acropetal and basipetal spatial pattern formation in the flower of wild type plants were postulated. It was shown that the acropetal spatial pattern formation alone took place in agamous mutants and basipetal spatial pattern formation alone, in apetala2 mutants. Different variants of flower structure are interpreted as a result of changes in the volume of meristem (space) and order of spatial pattern formation (time). 相似文献
13.
Simon Chamaillé-Jammes Ana?s Charbonnel Stéphane Dray Hillary Madzikanda Hervé Fritz 《PloS one》2016,11(4)
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. 相似文献
14.
Flagellate Predation on a Bacterial Model Community: Interplay of Size-Selective Grazing, Specific Bacterial Cell Size, and Bacterial Community Composition 总被引:4,自引:7,他引:4
下载免费PDF全文

The influence of grazing by the bacterivorous nanoflagellate Ochromonas sp. strain DS on the taxonomic and morphological structures of a complex bacterial community was studied in one-stage chemostat experiments. A bacterial community, consisting of at least 30 different strains, was fed with a complex carbon source under conditions of low growth rate (0.5 day−1 when nongrazed) and low substrate concentration (9 mg liter−1). Before and after the introduction of the predator, the bacterial community composition was studied by in situ techniques (immunofluorescence microscopy and fluorescent in situ hybridization), as well as by cultivation on agar media. The cell sizes of nonspecifically stained and immunofluorescently labeled bacteria were measured by image analysis. Grazing by the flagellate caused a bidirectional change in the morphological structure of the community. Medium-size bacterial cells, which dominated the nongrazed community, were largely replaced by smaller cells, as well as by cells contained in large multicellular flocs. Cell morphological changes were combined with community taxonomic changes. After introduction of the flagellate, the dominating strains with medium-size cells were largely replaced by single-celled strains with smaller cells on the one hand and, on the other hand, by Pseudomonas sp. strain MWH1, which formed the large, floc-like forms. We assume that size-selective grazing was the major force controlling both the morphological and the taxonomic structures of the model community. 相似文献
15.
Industrial Production and Quality Control of Two Liposome Gels: Size,Size Distribution and Stability
《Journal of liposome research》2013,23(3):535-541
AbstractWe use the mechanical high-shear homogenization method for large scale production of two cosmetic gels containing a liposome dispersion. To ensure homogeneity, reproducibility and stability, transmission electron-microscope techniques were used to determine particle size and size distribution of vesicles, in addition to other techniques such as flow cytometry fluorescence and Coulter analysis. 相似文献
16.
John Alcock 《Journal of Insect Behavior》1999,12(3):363-384
Females of Dawson's burrowing bees have a well-defined brood cell cycle involving cell construction, waxing, provisioning, egg laying, and cell capping. In one study population, nesting bees built smaller brood cells for offspring of lower weight and larger ones for heavier offspring, demonstrating their ability to anticipate the desired size of an offspring at the outset of a brood cell cycle. Furthermore, individual females varied the number of provisioning trips made per brood cell cycle by a factor of two or more, apparently exercising control over the amount of brood provisions supplied to an offspring. The size distribution of emerging males at two widely separated locations in 1997 was nearly identical to that recorded in 1995. These findings suggest that the production of small males (minors) is the result of active female control rather than the product of food shortages that force females to undersupply some brood cells. Female foraging decisions resulted in a bimodal distribution of weights of mature dormant larvae at one site in 1997. However, the times required to complete brood cell cycles at this site were not distributed bimodally. This result stemmed in part from daily variation among females in the duration of their provisioning trips as well as from seasonal variation in provisioning trip times. When provisioning trips lasted longer, females tended to make fewer trips per brood cell cycle, and so were presumably more likely to produce minor sons. As a result, the weight of an offspring was not tightly linked to the time investment required to produce it, making it difficult to compare the relative costs of minors and majors in terms of maternal time investments. 相似文献
17.
Territorial behaviour is a conspicuous determinant of social organisation in many reef fishes including parrotfishes. Most parrotfish studies in the Caribbean have focused on the species Scarus iserti and Sparisoma viride over limited ranges of reef habitat. By contrast, our study has included all common parrotfishes in Belize (Sc. iserti, Sp. viride, Sparisoma aurofrenatum, Sparisoma chrysopterum, and Sparisoma rubripinne) at three sites with different physical and biotic conditions and a wide range of fish densities. Density in Sc. iserti was strongly positively correlated to substrate rugosity. In contrast, densities of Sp. chrysopterum and Sp. rubripinne were unrelated to rugosity and territories were large. Territory size was smallest in Sc. iserti (mean areas at the three sites ranged from 41 to 120m2) and largest in Sp. rubripinne (ranged from 168 to 1400m2). All species except Sp. chrysopterum exhibited significantly larger territories where density was low as suggested by territory theory. Territory size decreased rapidly with increasing density of competitors. Patterns of harem size differed between two groups of parrotfishes. (1) Sc. iserti, Sp. viride, and Sp. aurofrenatum exhibited an expected positive correlation with territory size. (2) Harem size was smaller in Sp. rubripinne and Sp. chrysopterum, and showed no spatial pattern. Aggression in Sp. viride and Sc. iserti was directed entirely towards intraspecifics and positively density dependent. Interspecific interactions accounted for only 10% of observations and were recorded exclusively whilst following Sp. chrysopterum, Sp. rubripinne, and, to a lesser extent, Sp. aurofrenatum. A meta analysis of species interactions suggested that intraspecific interactions were most common where overall fish density was greatest and conversely, interspecific interactions occurred more often at lower densities. This may suggest that the economic defensibility of territories is largely confined to intraspecifics where density is greatest. Most (62%) of the interspecific interactions comprised Sp. rubripinne chasing the smaller species Sp. chrysopterum, suggesting that territorial behaviour has at least some non-reproductive origin and may therefore be associated with either food or shelter. It is feasible that at such low population densities, it is economically feasible for Sp. rubripinne to defend against intraspecifics and Sp. chrysopterum. Social behaviour in Sp. chrysopterum and Sp. rubripinne, and to a lesser extent Sp. aurofrenatum, differs to that of Sc. iserti and Sp. viride which conform to existing theories of social behaviour in reef fish. 相似文献
18.
Orangutans (Pongo pygmaeus) in a Sumatran swamp forest used home ranges far larger than any described so far for the species, in spite of living at the highest density on record. Although it was difficult to estimate home range sizes, minimum reliably estimated home range sizes for adult females are ca. 850 ha, whereas subadult and adult males used ranges of at least ca. 2500 ha, and perhaps much more. Range overlap was very high: up to 16 adult females, 9 adult males and at least 15 subadult males were seen within a single 4-ha square in the center of the study area. We found no evidence for the use of seasonally distincthome ranges—commuters—, and only some subadult males may have been transients—wanderers—without a stable home range. The large size of the home ranges is attributed to the coarse grain of the habitat mosaic, with orangutans converging on parts with a high density of favored fruit trees. Orangutans at this swamp forest included a variety of habitat types within their ranges. 相似文献
19.
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann''s cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. 相似文献
20.