首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of a real-time quantitative PCR method (5′ nuclease assay), based on the use of a probe labeled at its 5′ end with a stable, fluorescent lanthanide chelate, for the quantification of human fecal bifidobacteria was evaluated. The specificities of the primers and the primer-probe combination were evaluated by conventional PCR and real-time PCR, respectively. The results obtained by real-time PCR were compared with those obtained by fluorescent in situ hybridization, the current gold standard for intestinal microbiota quantification. In general, a good correlation between the two methods was observed. In order to determine the detection limit and the accuracy of the real-time PCR procedure, germfree rat feces were spiked with known amounts of bifidobacteria and analyzed by both methods. The detection limit of the method used in this study was found to be about 5 × 104 cells per g of feces. Both methods, real-time PCR and fluorescent in situ hybridization, led to an accurate quantification of the spiked samples with high levels of bifidobacteria, but real-time PCR was more accurate for samples with low levels. We conclude that the real-time PCR procedure described here is a specific, accurate, rapid, and easy method for the quantification of bifidobacteria in feces.  相似文献   

2.
Canada geese (Branta canadensis) are prevalent in North America and may contribute to fecal pollution of water systems where they congregate. This work provides two novel real-time PCR assays (CGOF1-Bac and CGOF2-Bac) allowing for the specific and sensitive detection of Bacteroides 16S rRNA gene markers present within Canada goose feces.The Canada goose (Branta canadensis) is a prevalent waterfowl species in North America. The population density of Canada geese has doubled during the past 15 years, and the population was estimated to be close to 3 million in 2007 (4). Canada geese often congregate within urban settings, likely due to available water sources, predator-free grasslands, and readily available food supplied by humans (6). They are suspected to contribute to pollution of aquatic environments due to the large amounts of fecal matter that can be transported into the water. This can create a public health threat if the fecal droppings contain pathogenic microorganisms (6, 7, 9, 10, 12, 13, 19). Therefore, tracking transient fecal pollution of water due to fecal inputs from waterfowl, such as Canada geese, is of importance for protecting public health.PCR detection of host-specific 16S rRNA gene sequences from Bacteroidales of fecal origin has been described as a promising microbial source-tracking (MST) approach due to its rapidity and high specificity (2, 3). Recently, Lu et al. (15) characterized the fecal microbial community from Canada geese by constructing a 16S rRNA gene sequence database using primers designed to amplify all bacterial 16S rRNA gene sequences. The authors reported that the majority of the 16S rRNA gene sequences obtained were related to Clostridia or Bacilli and to a lesser degree Bacteroidetes, which represent possible targets for host-specific source-tracking assays.The main objective of this study was to identify novel Bacteroidales 16S rRNA gene sequences that are specific to Canada goose feces and design primers and TaqMan fluorescent probes for sensitive and specific quantification of Canada goose fecal contamination in water sources.Primers 32F and 708R from Bernhard and Field (2) were used to construct a Bacteroidales-specific 16S rRNA gene clone library from Canada goose fecal samples (n = 15) collected from grass lawns surrounding Wascana Lake (Regina, SK, Canada) in May 2009 (for a detailed protocol, see File S1 in the supplemental material). Two hundred eighty-eight clones were randomly selected and subjected to DNA sequencing (at the Plant Biotechnology Institute DNA Technologies Unit, Saskatoon, SK, Canada). Representative sequences of each operational taxonomic unit (OTU) were recovered using an approach similar to that described by Mieszkin et al. (16). Sequences that were less than 93% similar to 16S rRNA gene sequences from nontarget host species in GenBank were used in multiple alignments to identify regions of DNA sequence that were putatively goose specific. Subsequently, two TaqMan fluorescent probe sets (targeting markers designated CGOF1-Bac and CGOF2-Bac) were designed using the RealTimeDesign software provided by Biosearch Technologies (http://www.biosearchtech.com/). The newly designed primer and probe set for the CGOF1-Bac assay included CG1F (5′-GTAGGCCGTGTTTTAAGTCAGC-3′) and CG1R (5′-AGTTCCGCCTGCCTTGTCTA-3′) and a TaqMan probe (5′-6-carboxyfluorescein [FAM]-CCGTGCCGTTATACTGAGACACTTGAG-Black Hole Quencher 1 [BHQ-1]-3′), and the CGOF2-Bac assay had primers CG2F (5′-ACTCAGGGATAGCCTTTCGA-3′) and CG2R (5′-ACCGATGAATCTTTCTTTGTCTCC-3′) and a TaqMan probe (5′-FAM-AATACCTGATGCCTTTGTTTCCCTGCA-BHQ-1-3′). Oligonucleotide specificities for the Canada goose-associated Bacteroides 16S rRNA primers were verified through in silico analysis using BLASTN (1) and the probe match program of the Ribosomal Database Project (release 10) (5). Host specificity was further confirmed using DNA extracts from 6 raw human sewage samples from various geographical locations in Saskatchewan and 386 fecal samples originating from 17 different animal species in Saskatchewan, including samples from Canada geese (n = 101) (Table (Table1).1). An existing nested PCR assay for detecting Canada goose feces (15) (targeting genetic marker CG-Prev f5) (see Table S1 in the supplemental material) was also tested for specificity using the individual fecal and raw sewage samples (Table (Table1).1). All fecal DNA extracts were obtained from 0.25 g of fecal material by using the PowerSoil DNA extraction kit (Mo Bio Inc., Carlsbad, CA) (File S1 in the supplemental material provides details on the sample collection).

TABLE 1.

Specificities of the CGOF1-Bac, CGOF2-Bac, and CG-Prev f5 PCR assays for different species present in Saskatchewan, Canada
Host group or sample typeNo. of samplesNo. positive for Bacteroidales marker:
CGOF1-BacCGOF2-BacCG-Prev f5All-Bac
Individual human feces2500125
Raw human sewage60006
Cows4100041
Pigs4800148
Chickens3400834
Geese10158515995a
Gulls1600614
Pigeons2510222
Ducks1000010
Swans10001
Moose1000010
Deer
    White tailed1000010
    Mule1000010
    Fallow1000010
Caribou1000010
Bison1000010
Goats1000010
Horses1500015
Total392595177381
Open in a separate windowaThe 6 goose samples that tested negative for the All-Bac marker also tested negative for the three goose markers.The majority of the Canada goose feces analyzed in this study (94%; 95 of 101) carried the Bacteroidales order-specific genetic marker designated All-Bac, with a relatively high median concentration of 8.2 log10 copies g1 wet feces (Table (Table11 and Fig. Fig.1).1). The high prevalence and abundance of Bacteroidales in Canada goose feces suggested that detecting members of this order could be useful in identifying fecal contamination associated with Canada goose populations.Open in a separate windowFIG. 1.Concentrations of the Bacteroidales (All-Bac, CGOF1-Bac, and CGOF2-Bac) genetic markers in feces from various individual Canada geese.The composition of the Bacteroidales community in Canada goose feces (n = 15) was found to be relatively diverse since 52 OTUs (with a cutoff of 98% similarity) were identified among 211 nonchimeric 16S rRNA gene sequences. Phylogenetic analysis of the 52 OTUs (labeled CGOF1 to CGOF52) revealed that 43 (representing 84% of the 16S rRNA gene sequences) were Bacteroides like and that 9 (representing 16% of the 16S rRNA gene sequences) were likely to be members of the Prevotella-specific cluster (see Fig. S2 in the supplemental material). Similarly, Jeter et al. (11) reported that 75.7% of the Bacteroidales 16S rRNA clone library sequences generated from goose fecal samples were Bacteroides like. The majority of the Bacteroides- and Prevotella-like OTUs were dispersed among a wide range of previously characterized sequences from various hosts and did not occur in distinct clusters suitable for the design of Canada goose-associated real-time quantitative PCR (qPCR) assays (see Fig. S2 in the supplemental material). However, two single Bacteroides-like OTU sequences (CGOF1 and CGOF2) contained putative goose-specific DNA regions that were identified by in silico analysis (using BLASTN, the probe match program of the Ribosomal Database Project, and multiple alignment). The primers and probe for the CGOF1-Bac and CGOF2-Bac assays were designed with no mismatches to the clones CGOF1 and CGOF2, respectively.The CGOF2-Bac assay demonstrated no cross-amplification with fecal DNA from other host groups, while cross-amplification for the CGOF1-Bac assay was limited to one pigeon fecal sample (1 of 25, i.e., 4% of the samples) (Table (Table1).1). Since the abundance in the pigeon sample was low (3.3 log10 marker copies g1 feces) and detection occurred late in the qPCR (with a threshold cycle [CT] value of 37.1), it is unlikely that this false amplification would negatively impact the use of the assay as a tool for detection of Canada goose-specific fecal pollution in environmental samples. In comparison, the nested PCR CG-Prev f5 assay described by Lu and colleagues (15) demonstrated non-host-specific DNA amplification with fecal DNA samples from several animals, including samples from humans, pigeons, gulls, and agriculturally relevant pigs and chickens (Table (Table11).Both CGOF1-Bac and CGOF2-Bac assays showed limits of quantification (less than 10 copies of target DNA per reaction) similar to those of other host-specific Bacteroidales real-time qPCR assays (14, 16, 18). The sensitivities of the CGOF1-Bac and CGOF2-Bac assays were 57% (with 58 of 101 samples testing positive) and 50% (with 51 of 101 samples testing positive) for Canada goose feces, respectively (Table (Table1).1). A similar sensitivity of 58% (with 59 of 101 samples testing positive) was obtained using the CG-Prev f5 PCR assay. The combined use of the three assays increased the detection level to 72% (73 of 101) (Fig. (Fig.2).2). Importantly, all markers were detected within groups of Canada goose feces collected each month from May to September, indicating relative temporal stability of the markers. The CG-Prev f5 PCR assay is an end point assay, and therefore the abundance of the gene marker in Canada goose fecal samples could not be determined. However, development of the CGOF1-Bac and CGOF2-Bac qPCR approach allowed for the quantification of the host-specific CGOF1-Bac and CGOF2-Bac markers. In the feces of some individual Canada geese, the concentrations of CGOF1-Bac and CGOF2-Bac were high, reaching levels up to 8.8 and 7.9 log10 copies g1, respectively (Fig. (Fig.11).Open in a separate windowFIG. 2.Venn diagram for Canada goose fecal samples testing positive with the CGOF1-Bac, CGOF2-Bac, and/or CG-Prev f5 PCR assay. The number outside the circles indicates the number of Canada goose fecal samples for which none of the markers were detected.The potential of the Canada goose-specific Bacteroides qPCR assays to detect Canada goose fecal pollution in an environmental context was tested using water samples collected weekly during September to November 2009 from 8 shoreline sampling sites at Wascana Lake (see File S1 and Fig. S1 in the supplemental material). Wascana Lake is an urban lake, located in the center of Regina, that is routinely frequented by Canada geese. In brief, a single water sample of approximately 1 liter was taken from the surface water at each sampling site. Each water sample was analyzed for Escherichia coli enumeration using the Colilert-18/Quanti-Tray detection system (IDEXX Laboratories, Westbrook, ME) (8) and subjected to DNA extraction (with a PowerSoil DNA extraction kit [Mo Bio Inc., Carlsbad, CA]) for the detection of Bacteroidales 16S rRNA genetic markers using the Bacteroidales order-specific (All-Bac) qPCR assay (14), the two Canada goose-specific (CGOF1-Bac and CGOF2-Bac) qPCR assays developed in this study, and the human-specific (BacH) qPCR assay (17). All real-time and conventional PCR procedures as well as subsequent data analysis are described in the supplemental material and methods. The E. coli and All-Bac quantification data demonstrated that Wascana Lake was regularly subjected to some form of fecal pollution (Table (Table2).2). The All-Bac genetic marker was consistently detected in high concentrations (6 to 7 log10 copies 100 ml1) in all the water samples, while E. coli concentrations fluctuated according to the sampling dates and sites, ranging from 0 to a most probable number (MPN) of more than 2,000 100 ml1. High concentrations of E. coli were consistently observed when near-shore water experienced strong wave action under windy conditions or when dense communities of birds were present at a given site and time point.

TABLE 2.

Levels of E. coli and incidences of the Canada goose-specific (CGOF1-Bac and CGOF2-Bac), human-specific (BacH), and generic (All-Bac) Bacteroidales 16S rRNA markers at the different Wascana Lake sites sampled weeklya
SiteE. coli
All-Bac
CGOF1-Bac
CGOF2-Bac
BacH
No. of positive water samples/total no. of samples analyzed (%)Min level-max level (MPN 100 ml−1)Mean level (MPN 100 ml−1)No. of positive water samples/total no. of samples analyzed (%)Min level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)No. of positive water samples/total no. of samples analyzed (%)Min level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)No. of positive water samples/total no. of samples analyzed (%)Min level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)No. of positive water samples/total no. of samples analyzedMin level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)
W18/8 (100)6-19671.18/8 (100)6.2-8.16.96/8 (75)0-4.72.44/8 (50)0-41.72/80-3.71.7
W29/10 (90)0-1,12019410/10 (100)5.8-6.86.49/10 (90)0-3.72.68/10 (80)0-3.32.20/1000
W310/10 (100)6-1,55053410/10 (100)6-7.8710/10 (100)2.9-4.83.810/10 (100)2-4.53.40/1000
W410/10 (100)16-1,73252910/10 (100)6.4-7.6710/10 (100)3.2-4.63.910/10 (100)2.8-4.33.40/1000
W510/10 (100)2-2,42068710/10 (100)5.5-6.96.37/10 (70)0-3.21.75/10 (50)0-3.11.20/1000
W610/10 (100)3-1,99038910/10 (100)5.5-76.39/10 (90)0-4.32.86/10 (60)0-5.121/100-3.41.3
W77/7 (100)5-2,4204457/7 (100)5.7-7.876/7 (86)0-3.82.65/7 (71)0-4.42.42/70-5.12.8
W810/10 (100)17-98016010/10 (100)6.3-8.67.18/10 (80)0-4.62.87/10 (70)0-4.42.30/1000
Open in a separate windowaMin, minimum; max, maximum.The frequent detection of the genetic markers CGOF1-Bac (in 65 of 75 water samples [87%]), CGOF2-Bac (in 55 of 75 samples [73%]), and CG-Prev f5 (in 60 of 75 samples [79%]) and the infrequent detection of the human-specific Bacteroidales 16S rRNA gene marker BacH (17) (in 5 of 75 water samples [7%[) confirmed that Canada geese significantly contributed to the fecal pollution in Wascana Lake during the sampling period. Highest mean concentrations of both CGOF1-Bac and CGOF2-Bac markers were obtained at the sampling sites W3 (3.8 and 3.9 log10 copies 100 ml1) and W4 (3.4 log10 copies 100 ml1 for both), which are heavily frequented by Canada geese (Table (Table2),2), further confirming their significant contribution to fecal pollution at these particular sites. It is worth noting that concentrations of the CGOF1-Bac and CGOF2-Bac markers in water samples displayed a significant positive relationship with each other (correlation coefficient = 0.87; P < 0.0001), supporting the accuracy of both assays for identifying Canada goose-associated fecal pollution in freshwater.In conclusion, the CGOF1-Bac and CGOF2-Bac qPCR assays developed in this study are efficient tools for estimating freshwater fecal inputs from Canada goose populations. Preliminary results obtained during the course of the present study also confirmed that Canada geese can serve as reservoirs of Salmonella and Campylobacter species (see Fig. S3 in the supplemental material). Therefore, future work will investigate the cooccurence of these enteric pathogens with the Canada goose fecal markers in the environment.  相似文献   

3.
Assessment of health risk and fecal bacterial loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for quantification of two recently described human-specific genetic markers targeting Bacteroidales-like cell surface-associated genes. Each assay exhibited a range of quantification from 10 to 1 × 106 copies of target DNA. For each assay, internal amplification controls were developed to detect the presence or absence of amplification inhibitors. The assays predominantly detected human fecal specimens and exhibited specificity levels greater than 97% when tested against 265 fecal DNA extracts from 22 different animal species. The abundance of each human-specific genetic marker in primary effluent wastewater samples collected from 20 geographically distinct locations was measured and compared to quantities estimated by real-time PCR assays specific for rRNA gene sequences from total Bacteroidales and enterococcal fecal microorganisms. Assay performances combined with the prevalence of DNA targets in sewage samples provide experimental evidence supporting the potential application of these quantitative methods for monitoring fecal pollution in ambient environmental waters.Waterborne diseases that originate from human fecal pollution remain a significant public health issue. As a result, a large number of methods have been developed to detect and quantify human fecal pollution (10, 12, 18, 20). The majority of these methods are based on real-time quantitative PCR (qPCR) assays designed to estimate the concentrations of 16S rRNA gene sequences from various subpopulations within the order Bacteroidales. This bacterial order constitutes a large proportion of the normal gut microbiota of most animals, including humans (3, 15, 27). Bacterial 16S rRNA genes are useful as markers because they have relatively low mutation rates (7) and are typically present in multiple operons, increasing template DNA levels available for detection (2, 11, 17, 29). While several studies have demonstrated the value of Bacteroides 16S rRNA gene-based qPCR assays, currently available assays cannot discriminate between several animal sources closely associated with humans, including cats, dogs, and/or swine (10, 12, 18, 20). Alternative qPCR assays targeting genes directly involved in host-specific interactions may be capable of increased discrimination of fecal pollution sources (22, 23) and are needed to complement existing qPCR-based approaches used to identify sources of human fecal pollution.A recent metagenomic survey of a human fecal bacterial community using genome fragment enrichment has led to the identification of hundreds of candidate human fecal bacterium-specific DNA sequences (23). PCR assays targeting two gene sequences encoding a hypothetical protein potentially involved in remodeling of bacterial surface polysaccharides and lipopolysaccharides (assay 19) and a putative RNA polymerase extracytoplasmic function sigma factor (assay 22) from Bacteroidales-like microorganisms exhibited a high level of specificity (100%) for human fecal material (23). However, it remained to be determined whether these reported chromosomal DNA sequences are abundant and uniform enough within human populations to be detected once diluted in the environment. On the basis of these considerations, the next steps toward the application of these gene sequences for water quality monitoring applications were to design qPCR assays for their detection and then to use these assays to evaluate the overall abundance and distribution of these sequences in human populations relative to those of rRNA gene sequences from different currently recognized fecal indicator bacterial groups.Here, we report the development of two qPCR assays for quantification of the human-specific DNA sequences targeted by previously reported PCR assays 19 and 22 (23). Method performance characteristics, including specificity, range of quantification (ROQ), limit of quantification, amplification efficiency, and analytical precision, were defined for each assay. An internal amplification control (IAC) was designed to monitor for the presence of inhibitors commonly associated with environmental sampling that can confound DNA target copy number estimations. Finally, the abundance of each DNA target in primary effluent wastewater samples representative of 20 geographically distinct human populations was measured by qPCR analysis. In addition, the abundances of these human-specific DNA genes in wastewater were compared to those of rRNA genes of Bacteroidales and enterococci, two general fecal indicator bacterial groups that have been widely used for water quality testing.  相似文献   

4.
Quantitative Legionella PCRs targeting the 16S rRNA gene (specific for the genus Legionella) and the mip gene (specific for the species Legionella pneumophila) were applied to a total of 223 hot water system samples (131 in one laboratory and 92 in another laboratory) and 37 cooling tower samples (all in the same laboratory). The PCR results were compared with those of conventional culture. 16S rRNA gene PCR results were nonquantifiable for 2.8% of cooling tower samples and up to 39.1% of hot water system samples, and this was highly predictive of Legionella CFU counts below 250/liter. PCR cutoff values for identifying hot water system samples containing >103 CFU/liter legionellae were determined separately in each laboratory. The cutoffs differed widely between the laboratories and had sensitivities from 87.7 to 92.9% and specificities from 77.3 to 96.5%. The best specificity was obtained with mip PCR. PCR cutoffs could not be determined for cooling tower samples, as the results were highly variable and often high for culture-negative samples. Thus, quantitative Legionella PCR appears to be applicable to samples from hot water systems, but the positivity cutoff has to be determined in each laboratory.  相似文献   

5.
Shiga toxin-converting bacteriophages (Stx phages) are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7. Stx phages are released from their bacterial hosts after lytic induction and remain free in the environment. Samples were analyzed for the presence of free Stx phages by an experimental approach based on the use of real-time quantitative PCR (qPCR), which enables stx to be detected in the DNA from the viral fraction of each sample. A total of 150 samples, including urban raw sewage samples, wastewater samples with fecal contamination from cattle, pigs, and poultry, and fecal samples from humans and diverse animals, were used in this study. Stx phages were detected in 70.0% of urban sewage samples (10 to 103 gene copies [GC] per ml) and in 94.0% of animal wastewater samples of several origins (10 to 1010 GC per ml). Eighty-nine percent of cattle fecal samples were positive for Stx phages (10 to 105 GC per g of sample), as were 31.8% of other fecal samples of various origins (10 to 104 GC per g of sample). The stx2 genes and stx2 variants were detected in the viral fraction of some of the samples after sequencing of stx2 fragments amplified by conventional PCR. The occurrence and abundance of Stx phages in the extraintestinal environment confirm the role of Stx phages as a reservoir of stx in the environment.Shiga toxin-producing Escherichia coli (STEC) is associated with diarrhea, hemorrhagic enterocolitis, and hemolytic-uremic syndrome in humans (46). Escherichia coli serotype O157:H7 is the main cause of these diseases, although other serotypes of E. coli and other enterobacteria species have been described (36). These E. coli serotypes produce at least two immunologically distinct Shiga toxins, called Stx1 and Stx2. In addition to these, several variations of these toxins have been reported in recent years, showing differences in virulence and distribution in the host populations examined (48, 51). Shiga toxin genes are carried by temperate bacteriophages (19, 35). Stx-encoding bacteriophages investigated to date consist of double-stranded DNA and have lambdoid genetic structures (19, 27, 32, 37, 47). The induction and regulation of these phages are directly involved in the production of toxin and, therefore, in the pathogenicity of the strains (8, 50). Stx phages are efficient vectors for the transfer of toxin genes, being able to convert nonpathogenic bacterial hosts into Stx-producing strains by transduction of stx, as has been demonstrated under various conditions (1, 4, 27, 28, 41, 49).Most of the reported outbreaks of STEC infections are associated with cattle products (10, 17), with the consumption of contaminated foods (10, 34), and with several waterborne infections (30). Stx phages are present within fecally contaminated aquatic environments (9, 28, 30, 32, 45). Moreover, a high percentage of STEC strains present in extraintestinal environments carry inducible Stx phages (14, 30).As individuals infected with STEC strains shed large quantities of Stx phages in feces, Stx phages should be prevalent in the environment, as are other viruses transmitted by the fecal-oral route (5, 11) or bacteriophages infecting bacteria present in the intestinal tract (16, 23). Moreover, those STEC strains isolated from food and animals carry inducible Stx phages (24, 27, 42). The virulence profiles of STEC strains isolated from food also suggest the presence of inducible Stx phages (10).Stx phages in sewage have been detected by nested PCR (28, 29, 31). However, to quantify them, the most probable number (MPN) method was applied, which allows only a rough estimate of the amount of Stx phages present in the sample. To assess the number of Stx phages accurately, real-time quantitative PCR (qPCR) technology is a useful tool. This technology is both sensitive and specific, and it gives accurate quantitative results (25). Comparison with a standard enables the number of copies of stx to be quantified, which can then be translated into the number of Stx phage particles.Little is known about the prevalence of phages carrying stx in fecal samples. The data available on the numbers of these phages in fecally contaminated water samples were only roughly estimated. The first step to evaluate the role of Stx phages in the environment as lateral gene transfer vectors is to know the extent of these viruses in the environment. The aim of this study is to report quantitative data on the abundance of Stx phages in urban sewage samples, in wastewater samples from cattle, pigs, and poultry, and in diverse fecal samples, calculated by means of a methodology based on qPCR.  相似文献   

6.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

7.
目的:建立人肿瘤细胞NKG2D配体基因(MICA、MICB、ULBP1、ULBP2、ULBP3)表达的实时荧光定量PCR(real-timefluorescence quantitative PCR)检测方法。方法:根据NCBI基因库中NKG2D配体基因序列,设计合成引物。用Trizol法从培养的肿瘤细胞(BEC-7402、HeLa、MDA-MB-435、XWLC-05)中提取总RNA,逆转录成cDNA,建立实时荧光定量PCR检测NKG2D配体基因表达的方法,并检测NKG2D配体在肿瘤细胞株中的表达。结果:经过琼脂糖凝胶电泳、熔解曲线和标准曲线分析,用所设计的引物和SYBR Green I能够特异扩增和定量检测NKG2D配体基因的表达。该方法成功检测4种肿瘤细胞NKG2D配体基因的表达。结论:建立了人NKG2D配体基因表达的实时荧光定量PCR检测方法,为进一步研究人NKG2D配体在肿瘤免疫中的作用提供了有效手段。  相似文献   

8.
刘枫  郑冰蓉  杨举伦  王力  陈玥  赵稳兴 《生物磁学》2011,(19):3621-3624
目的:建立人肿瘤细胞NKG2D配体基因(MICA、MICB、ULBP1、ULBP2、ULBP3)表达的实时荧光定量PCR(real-time fluorescence quantitativePCR)检测方法。方法:根据NCBI基因库中NKG2D配体基因序列,设计合成引物。用Trizo1法从培养的肿瘤细胞(BEC-7402、HeLa、MDA-MB-435、XWLC-05)中提取总RNA,逆转录成eDNA,建立实时荧光定量PCR检测NKG2D配体基因表达的方法,并检测NKG2D配体在肿瘤细胞株中的表达。结果:经过琼脂糖凝胶电泳、熔解曲线和标准曲线分析,用所设计的引物和SYBR GreenI能够特异扩增和定量检测NKG2D配体基因的表达。该方法成功检测4种肿瘤细胞NKG2D配体基因的表达。结论:建立了人NKG2D配体基因表达的实时荧光定量PCR检测方法,为进一步研究人NKG2D配体在肿瘤免疫中的作用提供了有效手段。  相似文献   

9.
10.
Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds.  相似文献   

11.
12.
Botulinum neurotoxins are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven distinct serotypes (A to G) known to cause botulism in animals and humans. In this study, a multiplexed quantitative real-time PCR assay for the simultaneous detection of the human pathogenic C. botulinum serotypes A, B, E, and F was developed. Based on the TaqMan chemistry, we used five individual primer-probe sets within one PCR, combining both minor groove binder- and locked nucleic acid-containing probes. Each hydrolysis probe was individually labeled with distinguishable fluorochromes, thus enabling discrimination between the serotypes A, B, E, and F. To avoid false-negative results, we designed an internal amplification control, which was simultaneously amplified with the four target genes, thus yielding a pentaplexed PCR approach with 95% detection probabilities between 7 and 287 genome equivalents per PCR. In addition, we developed six individual singleplex real-time PCR assays based on the TaqMan chemistry for the detection of the C. botulinum serotypes A, B, C, D, E, and F. Upon analysis of 42 C. botulinum and 57 non-C. botulinum strains, the singleplex and multiplex PCR assays showed an excellent specificity. Using spiked food samples we were able to detect between 103 and 105 CFU/ml, respectively. Furthermore, we were able to detect C. botulinum in samples from several cases of botulism in Germany. Overall, the pentaplexed assay showed high sensitivity and specificity and allowed for the simultaneous screening and differentiation of specimens for C. botulinum A, B, E, and F.Botulinum neurotoxins (BoNTs), the causative agents of botulism, are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven serotypes, A to G. While the botulinum neurotoxins BoNT/A, BoNT/B, BoNT/E, and BoNT/F are known to cause botulism in humans, BoNT/C and BoNT/D are frequently associated with botulism in cattle and birds. Despite its toxicity, BoNT/G has not yet been linked to naturally occurring botulism (26).Botulism is a life-threatening illness caused by food contaminated with BoNT (food-borne botulism), by the uptake and growth of C. botulinum in wounds (wound botulism), or by colonization of the intestinal tract (infant botulism) (14). In addition, C. botulinum and the botulinum neurotoxins are regarded as potential biological warfare agents (8).The gold standard for the detection of BoNTs from food or clinical samples is still the mouse lethality assay, which is highly sensitive but rather time-consuming. In addition to various immunological assays for BoNT detection, several conventional and real-time PCR-based assays for the individual detection of bont genes have been reported (2, 9-12, 15, 20, 23, 27-30). A major improvement is the simultaneous detection of more than one serotype, which results in a reduction of effort and in the materials used. In recent years, both conventional and real-time PCR-based multiplex assays have been developed for the simultaneous detection of C. botulinum serotypes (1, 6, 22, 24). To date, however, no internally controlled multiplex real-time PCR assay for the simultaneous detection and differentiation of all four serotypes relevant for humans has been reported.We describe here a highly specific and sensitive multiplex real-time PCR assay based on the 5′-nuclease TaqMan chemistry (17) for the simultaneous detection of the C. botulinum types A, B, E, and F, including an internal amplification control (IAC). Furthermore, we developed six different singleplex assays based on the TaqMan chemistry for the detection of C. botulinum serotypes A to F. Assays were validated on 42 C. botulinum strains, 57 non-C. botulinum strains, on spiked food samples, and on real samples from cases of botulism in Germany.  相似文献   

13.
A real-time quantitative PCR (RTQ-PCR) method for measuring the abundance of Pseudoalteromonas species in marine samples is presented. PCR primers targeting a Pseudoalteromonas-specific region of the 16S rRNA gene were tested at three different levels using database searches (in silico), a selection of pure cultures (in vitro), and a combined denaturing gradient gel electrophoresis and cloning approach on environmental DNA (in situ). The RTQ-PCR method allowed for the detection of SYBR Green fluorescence from double-stranded DNA over a linear range spanning six orders of magnitude. The detection limit was determined as 1.4 fg of target DNA (1,000 gene copies) measured in the presence of 20 ng of nontarget DNA from salmon testes. In this study, we discuss the importance of robust post-PCR analyses to overcome pitfalls in RTQ-PCR when samples from different complex marine habitats are analyzed and compared on a nonroutine basis. Representatives of the genus Pseudoalteromonas were detected in samples from all investigated habitats, suggesting a widespread distribution of this genus across many marine habitats (e.g., seawater, rocks, macroalgae, and marine animals). Three sample types were analyzed by RTQ-PCR to determine the relative abundance of Pseudoalteromonas ribosomal DNA (rDNA) compared to the total abundance of eubacterial rDNA. The rDNA fractions of Pseudoalteromonas compared to all Eubacteria were 1.55% on the green alga Ulva lactuca, 0.10% on the tunicate Ciona intestinalis, and 0.06% on the green alga Ulvaria fusca.  相似文献   

14.
A commercially available real-time, rapid PCR test was evaluated for its ability to detect Escherichia coli O157. Both the sensitivity and specificity of the assay were 99% for isolates in pure culture. The assay detected 1 CFU of E. coli O157:H7 g−1 in artificially inoculated bovine feces following enrichment.  相似文献   

15.
In 2007, the Centers for Disease Control and Prevention (CDC) reported that Human adenovirus type 14 (HAdV-14) infected 106 military personnel and was responsible for the death of one U.S. soldier at Lackland Air Force Base in Texas. Identification of the responsible adenovirus, which had not previously been seen in North America and for which rapid diagnostic tools were unavailable, required retrospective analysis at reference laboratories. Initial quarantine measures were also reliant on relatively slow traditional PCR analysis at other locations. To address this problem, we developed a real-time PCR assay that detects a 225 base pair sequence in the HAdV-14a hexon gene. Fifty-one oropharyngeal swab specimens from the Naval Health Research Center, San Diego, CA and Advanced Diagnostic Laboratory, Lackland AFB, TX were used to validate the new assay. The described assay detected eight of eight and 19 of 19 confirmed HAdV-14a clinical isolates in two separate cohorts from respiratory disease outbreaks. The real-time PCR assay had a wide dynamic range, detecting from 102 to 107 copies of genomic DNA per reaction. The assay did not cross-react with other adenoviruses, influenza, respiratory syncytial virus, or common respiratory tract bacteria. The described assay is easy to use, sensitive and specific for HAdV-14a in clinical throat swab specimens, and very rapid since turnaround time is less than four hours to obtain an answer.  相似文献   

16.
In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens.Maintaining healthy coastal water systems is essential, since poor water quality can have detrimental effects on mangroves, seagrass beds, coral reefs, the fishing and shellfish harvesting industries, and the health of recreational water users (1, 5, 15, 17, 20, 44). Since 1972 in the United States, each state has been required to set total maximum daily loads (TMDLs) for pollutants in water bodies according to section 303(d) of the Clean Water Act (50). The probability that microbial pathogens are present is estimated by enumerating indicator bacteria, which are shed in the feces of humans and most animals. The U.S. Environmental Protection Agency recommends using Escherichia coli and enterococci to assess the quality of freshwater and saline water, respectively (47); however, Florida currently uses fecal coliforms and enterococci as indicators of fecal pollution (42).When bacterial indicators exceed regulatory levels, a plan of action (TMDL implementation) must be developed to reduce pathogens. TMDL plans for “pathogen” reduction are particularly problematic because they rely upon surrogate indicator bacteria, which yield little or no insight as to the source of pollution. High indicator bacteria concentrations can be attributed to many sources, including agricultural runoff, storm water runoff, wildlife, pets, faulty septic systems (onsite wastewater treatment and disposal systems), and a failing central sewer infrastructure (5, 12, 28).To address the issue of source identification, methods have been developed in which the biochemistry or genetics of certain microorganisms are used to indirectly identify probable source(s) of fecal pollution, which is termed microbial source tracking (MST) (48). MST methods based on detection of a source-associated gene (marker) by PCR have proliferated over the past 10 years due to the additional information they can provide to watershed managers on fecal contamination sources (43). Although marker detection by endpoint (binary) PCR can give important insights on the source(s) of fecal contamination, quantitative measurements can provide information about the relative magnitude of contamination from various sources. Moreover, epidemiological studies on the correlation between recreational water use, microbial contamination, and the risk of illness will greatly benefit from the ability to quantify MST markers, rather than simply assessing binary (+/−) detection.Although many bacterial targets have been proposed for MST of human sewage (8, 39, 46a), fewer viral targets have been investigated (19, 24, 33). Polyomavirus is the sole genus in the family Polyomaviridae (22). These viruses have a 5-kbp double-stranded DNA genome surrounded by a 40- to 50-nm icosahedral capsid (38). The JCV and BKV human polyomaviruses (HPyVs) have similarly structured genomes that show ∼75% identity (21). BK virus (BKV) and JC virus (JCV) gained much attention in the late 1970s as the etiological agents of kidney nephritis (i.e., BKV reactivation in the kidneys) and progressive multifocal leukoencephalopathy (i.e., JCV reactivation in brain tissue) in the immunocompromised (16, 34). Serological studies have shown that >70% of adults harbor antibodies to BKV or JCV (27, 30, 44). These viruses are known for producing lifelong, asymptomatic viruria in immunocompetent individuals (37). In 2000 it was first suggested that JCV would be a useful indicator of human sewage in water (11). The obligate host specificity and abundance of BKV and JCV in municipal sewage has led to the successful use of these viruses to indicate human fecal pollution in environmental water samples (12, 29).Due to the health implications of BKV and JCV, several methods have been developed to rapidly detect either BKV or JCV in clinical samples (6, 31, 35, 56). However, from an MST standpoint, it is advantageous to target both BKV and JCV. BKV has been found in feces (54), and both viruses are excreted in the urine (6, 11, 37, 55, 60) either simultaneously or individually. The focus of this research was the modification of the previously developed nested PCR protocol for HPyVs detection (29) to a TaqMan quantitative PCR (QPCR) assay to simultaneously detect and quantify both BKV and JCV. Furthermore, we compared measurements obtained with the newly developed QPCR assay to those of other water quality indicators and MST markers. These indicators included bacterial indicator concentrations (49) and PCR detection of human-associated markers currently used for MST. These included human-associated Bacteroidetes (8), Methanobrevibacter smithii (46a), and adenovirus (36). To assess the potential of HPyVs to mimic the fate of pathogens in water, the persistence of all of the water quality indicators was assessed, and relationships between bacterial indicator organisms and MST markers in both human waste samples as well as contaminated environmental samples were examined.  相似文献   

17.
实时荧光定量PCR法检测转基因小鼠拷贝数   总被引:9,自引:0,他引:9  
目的利用实时荧光定量PCR法鉴定转基因小鼠外源基因插入拷贝数。方法以TG-CARK转基因首见鼠为研究对象,选取小鼠的高度保守基因Fabpi为内参,利用绝对定量的实时荧光PCR法鉴定转基因小鼠拷贝数,并与传统的Southern blot方法的定量结果进行比较。结果实时定量PCR鉴定的转基因拷贝数与Southernblot法完全一致,三只TG-CARK首见小鼠的拷贝数分别为1,7,45。结论实时定量PCR技术具有高准确性、高稳定性、高通量和低成本的优点,是比传统杂交技术更好的鉴定小鼠转基因拷贝数的方法。  相似文献   

18.
目的:建立人博卡病毒(HBoV)核酸特异、快速、敏感的TaqMan探针实时定量PCR检测方法,并对临床样本进行检测。方法:比对编码HBoV非结构蛋白NP-1的基因序列,选取其保守片段设计引物和探针,建立实时荧光定量PCR检测方法,并与传统PCR方法进行比较,然后分别对两者的灵敏性、特异性、稳定性及临床样本检验的适用性等进行评价。结果:所建立的实时定量PCR检测方法可用于HBoV的特异性检测;相对于传统PCR所达到的250拷贝/反应的检测灵敏度,实时定量PCR的检测灵敏度可高达10拷贝/反应,检测范围为109~101拷贝/反应,且具有良好的特异性和重复性;初步用于76份临床呼吸道标本检测,检出阳性5例,高于普通PCR方法(3/76)。结论:建立了HBoV TaqMan探针实时定量PCR检测方法,并可用于临床鼻咽拭子样本的检测,为开展HBoV流行病学监测及早期临床诊断提供了技术手段。  相似文献   

19.
Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described bovine feces-specific genetic markers and a method for the enumeration of these markers using a Markov chain Monte Carlo approach. Both assays exhibited a range of quantification from 25 to 2 × 106 copies of target DNA, with a coefficient of variation of <2.1%. One of these assays can be multiplexed with an internal amplification control to simultaneously detect the bovine-specific genetic target and presence of amplification inhibitors. The assays detected only cattle fecal specimens when tested against 204 fecal DNA extracts from 16 different animal species and also demonstrated a broad distribution among individual bovine samples (98 to 100%) collected from five geographically distinct locations. The abundance of each bovine-specific genetic marker was measured in 48 individual samples and compared to quantitative PCR-enumerated quantities of rRNA gene sequences representing total Bacteroidetes, Bacteroides thetaiotaomicron, and enterococci in the same specimens. Acceptable assay performance combined with the prevalence of DNA targets across different cattle populations provides experimental evidence that these quantitative assays will be useful in monitoring bovine fecal pollution in ambient waters.  相似文献   

20.
目的:建立一种检测马尔尼菲青霉菌的实时荧光定量PCR的方法。方法:针对马尔尼菲青霉菌5.8S rRNA设计特异性PCR引物,采用核酸荧光染料SYBR GreenⅠ进行实时荧光定量PCR检测,探讨该方法的灵敏度和特异性,并进行临床样品检测验证。结果:该方法的特异性较好,与该菌属内的其他细菌间无交叉反应;灵敏度可检测出10个细胞/mL全血,在检测范围内线性良好,相关系数R2=0.981。临床样品检测和传统的培养方法结果完全相符。结论:该方法特异性好,灵敏度高,操作简单,检测时间短;临床样品检测具有很好的准确性,从本研究的结果显示实时荧光定量PCR方法在检测马尔尼菲青霉菌中的应用可以大大缩短临床的诊断时间,提高临床诊断的准确度和效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号