首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid complexes of D-galacturonic acid (GalA) with cobalt(II), copper(II), nickel(II) and oxovanadium(IV) (1-4) were prepared and characterised. The metal-to-ligand molar ratio was 1:2 for complexes 1-3 and 1:1 for complex 4. The alpha- and beta-anomers of GalA were detected in all the complexes in solid state and in solutions. An addition of small amounts of the paramagnetic complexes to the D2O solution of pure ligand led to NMR line broadening of some 1H and 13C nuclei. This broadening was sensitive to the anomeric state of GalA in the case of complexes 1 and 4. NMR and vibrational spectroscopic data indicate the formation of carboxylate complexes of all the cations, while noncarboxylic oxygens are also involved into the metal bonding in some cases. VCD spectra of complexes 1-4 in D2O and Me2SO-d6 solutions confirm that GalA carboxylic group may participate in the formation of optically active species around the metal cation. Possible ways of GalA coordination by metal cations of this study were proposed and discussed.  相似文献   

2.
Evaluation of stability of vanadium(IV) and (V) complexes under similar conditions is critical for the interpretation and assessment of bioactivity of various vanadium species. Detailed understanding of the chemical properties of these complexes is necessary to explain differences observed their activity in biological systems. These studies are carried out to link the chemistry of both vanadium(IV) and (V) complexes of two ligands, 2,6-pyridinedicarboxylic acid (dipicolinic acid, H(2)dipic) and 4-hydroxy-2,6-pyridinedicarboxylic acid (H(2)dipic-OH). Solution speciation of the two 2,6-pyridinedicarboxylic acids with vanadium(IV) and vanadium(V) ions was determined by pH-potentiometry at I=0.2 M (KCl) ionic strength and at T=298 K. The stability and the metal affinities of the ligands were compared. Vanadium(V) complexes were found to form only tridentate coordinated 1:1 complexes, while vanadium(IV) formed complexes with both 1:1 and 1:2 stoichiometries. The formation constant reflects hindered coordination of a second ligand molecule, presumably because of the relatively small size of the metal ion. The most probable binding mode of the complexes was further explored using ambient and low temperature EPR spectroscopy for vanadium(IV) and 51V NMR spectroscopy for vanadium(V) systems. Upon complex formation the pyridinol-OH in position 4 deprotonates with pK approximately 3.7-4.1, which is approximately 6 orders of magnitude lower than that of the free ligand. The deprotonation enhances the ligand metal ion affinity compared to the parent ligand dipicolinic acid. In the light of the speciation and stability data of the metal complexes, the efficiency of the two ligands in transporting the metal ion in the two different oxidation states are assessed and discussed.  相似文献   

3.
Radical scavenging activities of flavonoids rutin, taxifolin, (-)-epicatechin, luteolin, and their complexes with transition metal (Fe2+, Fe3+, and Cu2+) towards superoxide were determined using illumination of riboflavin as source and NBT as detector of O*2-. The scavenger potencies of flavonoid metal complexes were significantly higher than those of the parent flavonoids. To elucidate the mechanism of this phenomenon, the rates of superoxide-dependent oxidation of flavonoids and their metal complexes in photochemical system with riboflavin were examined. It was found for the first time that flavonoids bound to metal ions were much less subjected to oxidation compared with those of free compounds. The findings directly demonstrate superoxide scavenging activity of metal ions in complexes with flavonoids and support earlier suggestions that flavonoid metal complexes may exhibit superoxide dismuting activity.  相似文献   

4.
New complexes of Cu(II), Ni(II), and Co(II) with 3-benzoyl-1-[2-N-(substituted-2'-thienyl methylmethylene/methylene)] prop-2-ene-1-oic acid hydrazides have been synthesized and characterized by elemental analysis, molecular weight determination, molar conductance, and magnetic moment and spectroscopic techniques. Conductance measurements indicate the nonionic nature of the complexes. From the spectroscopic studies, it has been concluded that the N-substituted acid hydrazides act as tridentate ligands forming an O-N-S conjugate system and coordinating with metal ions through oxygen of carbonyl group, nitrogen of azomethine, and sulphur of thiophene moiety. Octahedral geometry has been proposed for all the complexes. The ligands and their complexes were tested for in vitro growth inhibitory activity against phytopathogenic fungi viz. Alternaria alternata, Colletotrichum capsicum, Fusarium oxysporum, and Rhizoctonia solani at 28 degrees C; and bacteria viz. gram positive Bacillus subtilis and gram negative Escherichia coli at 37 degrees C by a two-fold serial dilution technique. In some cases an increase in the biocidal activity of the ligands as a consequence of coordination with metal ions was observed in terms of minimum inhibitory concentration (MIC) values. The trend of growth inhibition in the complexes was found to be in the order: Cu greater than Ni greater than Co.  相似文献   

5.
《Inorganica chimica acta》2006,359(4):1159-1168
Reversible coordination of amino acid side chains to metal complexes is widely used in protein purification (IMAC technique), but available data on affinity and selectivity of such binding processes are limited. We use potentiometric titration of a series of metal complexes with vacant coordination sites in the presence of molecules resembling amino acid side chain functionalities to screen for new affinities. The investigation confirms documented affinities of imidazole to nickel(II) and copper(II) IDA and NTA complexes, and discovers a hitherto unknown binding of zinc(II)- and cadmium(II) cyclen complexes to imidazole.  相似文献   

6.
The complexes formed between D-3-phosphoglyceric acid and H(+), Cu(II) and VO(IV) were studied by pH-potentiometric and spectral (UV-Vis, EPR and CD) methods in order to describe the speciation of the metal ions and to determine the most probable binding modes in the complexes formed in these systems. The results show that, in the pH range between 2 and 4, mononuclear 1:1 complexes are formed through bidentate (MAH) or tridentate (MA) coordination of the ligand. At higher pH, when the proton competition for the central alcoholic-OH function decreases, alcoholate-bridged dinuclear species of composition M(2)A(2)H(-n) (n=1-3) become predominant. VO(IV) seems to have a higher tendency than Cu(II) to form such dinuclear complexes.  相似文献   

7.
The binary complexes of 5-amino-3,5-dideoxy-D-glycero-D-galactononulosic acid (NANA), commonly called N-acetyl neuraminic acid, formed with biological metal ions such as Co(II) and Cu(II) and toxic metal ions such as Cd(II) and Pb(II) were investigated in aqueous solution by means of potentiometry, UV and NMR spectroscopy. The corresponding ternary systems with 2,2'-bipyridine were studied in aqueous solution by potentiometry and UV spectroscopy. NANA co-ordinates all metal ions, in both binary and ternary systems through the carboxylic group (protonated or deprotonated according to pH), pyranosidic ring oxygen and glycerol chain alcoholic hydroxy groups. The prevailing species in the pH range 2-7 are of [M(NANA)(2)] type, and their stability constants are greater than those of simple carboxylate complexes. Above pH 7, the species [M(NANA)(2)OH](-) are also formed, but they do not prevent the precipitation of metal hydroxides. This work provides information on the solution state chemistry of NANA in the presence of bivalent metal ions; its great affinity for the toxic metals Cd(II) and Pb(II), near physiological conditions, and the relatively high stability of the complex species found may also account for the mechanism of toxicity.  相似文献   

8.
Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.  相似文献   

9.
Red blood cells (RBCs) are probably the most common target through the damaging action of reactive oxygen species on the cells. The photohemolysis activity of m-chloroperbenzoic acid (CPBA) was concentration- and exposure time-dependent. Twenty minutes photo exposure time and 200 μm of CPBA concentration were optimum to study the effect of generated superoxide (O2-) and hydroxyl (&bull•OH) radicals on RBCs. RBCs lysis photosensitized by CPBA was investigated in the presence of [(VL2O)(VL2H2O)]Cl6, [MnL2O]2Cl42H2O, [FeL2Cl2]Cl H2O, [CoL2Cl2]4H2O or [ZnL2Cl2]H2O respectively, where L is 2-methylaminopyridine, with SOD-mimetic activities with the aim of ascertaining their protective activity towards the photo induced cell damage. The decrease of photolytic activity caused by these complexes was concentration-dependent and the maximum percentage of protective activity was 75, 70, 68, 57 or 24% for [(VL2O)(VL2H2O)]Cl6, [MnL2O]2Cl4 2H2O, [FeL2Cl2]Cl H2O, [CoL2Cl2]4H2O or [ZnL2Cl2]H2O complex respectively, against the cell irradiated without addition of metal complexes. The comparison between the decrease of photolytic activity caused by these complexes and their SOD-mimetic activity of these metal complexes showed an appreciable correlation.  相似文献   

10.
In recent years data have accumulated regarding genotoxic properties of dithiocarbamic acid derivatives. The results from the present work indicate that the mutagenicity of these compounds depends on an indirect effect via oxygen radicals. Mutagenicity of tetramethylthiuram disulfide ( TMTD ), that was used as a model substance, was established with both frameshift and base substitution sensitive strains of Salmonella typhimurium. Addition of copper ions resulted in a decreased survival at low dithiocarbamate doses. The dose response curves seem to correlate with the formation of two types of metal dithiocarbamate complexes. At low doses charged complexes are formed, while the formation of uncharged complexes is favoured at higher dosages. The data suggest that this formation of uncharged metal complexes implies a decreased toxicity but at the same time an increased mutagenicity. The mutagenicity of both TMTD and its ethyl analogue TETD was enhanced by oxygen. Furthermore, TMTD potentiates the mutagenic action of menadione, a substance that produces O(2) and H2O2 by redox cycling with molecular oxygen. Interaction of uncharged metal dithiocarbamate complexes with both production and detoxification of reactive forms of oxygen is suggested to be responsible for the direct mutagenic effects via oxidative damage to DNA. A further enhancement of the oxygen radical content of the cells by adding microsomes that produce oxygen radicals via autoxidation of cytochrome P-450 is proposed as the mechanism for the 'metabolic activation of TMTD '.  相似文献   

11.
Faller JW  Liu X  Parr J 《Chirality》2000,12(5-6):325-337
Heterobidentate chelating ligands comprising P,O-donor sets produce chiral metal centers when bound to arene-ruthenium complexes. The cymene complex [CyRu(eta2-chelate-P,O)Cl]+ cations are precursors to 16-electron dicationic strong Lewis acids which have potential use in asymmetric catalysis. Sixteen-electron complexes of this type, however, also provide a pathway with a low energy barrier to epimerization of the metal center in intermediates. With the chiral ligand (R,R)-chiraphos monoxide, the metal center in [CyRu(eta2)-(R,R)-Ph2PCHMeCHMe Ph2PO-P,O)Cl]+ epimerizes to minimize steric interactions in the two diastereomers yielding a 8. 2:1 dr in solution. Nevertheless, upon crystallization a new equilibrium is obtained in the solid and the crystals obtained have a 1:1 dr. These crystals are quasiracemates, which contain equal amounts of the (RRu) and (SRu)-CyRu-P-O-Cl stereocenters within the same crystal. The doubly charged Lewis acid, [CyRu(eta2-(R, R)-Ph2PCHMeCHMe Ph2PO-P,O)(solvate)]2+ derived from the chloro complex by chloride abstraction with AgSbF6 gave modest ee's (30%) in the Diels-Alder reaction of methacrolein with cyclopentadiene.  相似文献   

12.
With the aim to design new chelators for the clinical treatment of different diseases involving the trivalent metal ions Fe(III) and Al(III), we present the equilibria of kojic acid and its derivative 6-[5-hydroxy-2-hydroxymethyl-pyran-4-one]-5-hydroxy-2-hydroxymethyl-pyran-4-one with these two metal ions. Potentiometric and spectrophotometric techniques for iron, and potentiometry and 1H NMR for aluminum were used, supported by X-ray, electrospray ionization-mass spectrometry (ESI-MS), calorimetry and quantum chemical calculations. In this work, evidence is given on the formation of MeL, MeL2, and MeL3 complexes of both metal ions with kojic acid, confirmed by the X-ray structure of the FeL3 complex, and of variously protonated Me2L2 and MeL2 complexes of 6-[5-hydroxy-2-hydroxymethyl-pyran-4-one]-5-hydroxy-2-hydroxymethyl-pyran-4-one. The extremely good pFe value for this second ligand gives confidence to, and opens perspectives for, the search of new kojic acid derivatives.  相似文献   

13.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   

14.
The substrate activities of a series of tripositive metal ion-pyrophosphate complexes with yeast inorganic pyrophosphatase were examined. While the Michaelis constants for these complexes were shown to be between one and two orders of magnitude greater than that of the natural substrate, [Mg(H2O)4PPi]2-, the turnover numbers were in general comparable to that of [Mg(H2O)4PPi]2-. These data suggest that the nature of the metal ion cofactor effects substrate binding but in most cases not catalysis. Thus, the role of the metal ion in catalysis is probably restricted to that of an electron sink.  相似文献   

15.
The reduction of cytochrome c by thioglycolic acid was found to be extremely sensitive to metal catalysis. The rate of the uncatalyzed reaction was negligible in comparison with rates obtained from reactions supplemented with catalytic amounts of copper or iron. Both the catalyzed and uncatalyzed reactions were independent of pH (near neutrality) but when o-phenanthroline was included in the reaction mixture, a pH dependence was induced. This pH dependence is the result of an interference of oxygen with the metal complexes. A comparison of the rate constants at zero ionic strenght, which were obtained from the application of the Debye-Hückel theory for the ionic strength dependence, demonstrated that copper complexes are superior catalysts as compared with iron complexes. Our results suggest that in the copper-mediated reaction, the catalyst is a cupric thioglycolate complex with a net charge of ?2. The addition of o-phenanthroline to the reaction mixture results in a tenfold decrease in the catalytic activity and in a change in the net charge of the catalyst to ?1. At pH 8 the iron-mediated reduction is catalyzed by a ferric thioglycolate complex, whereas at pH 7 a ferrothioglycolate complex provides the catalytic activity. Both complexes have a net negative charge of ?2. At both pH's the catalytic activity is completely abolished by the addition of o-phenanthroline. The results demonstrate the effectiveness by which metal-sulfur complexes can facilitate one-electron transfer reactions and could there-fore serve as a model in the study of various biological oxidations.  相似文献   

16.
The emergence of multi-drug resistant pathogens in infectious disease conditions accentuates the need for the design of new classes of antimicrobial agents that could defeat the multidrug resistance problems. As a new class of molecules, the Heterocyclic Schiff base is of considerable interest, owing to their preparative accessibility, structural flexibilities, versatile metal chelating properties, and inherent biological activities. In the present study, CAM-B3LYP/LANL2DZ and M062X/DEF2-TZVP level of density functional method is used to explore the complexation of chalcone based Schiff base derivatives by Co2+, Ni2+, Cu2+, and Zn2+ metal ions. The HL(1-3)-Co2+, HL(1-3)-Ni2+ and HL(1-3)-Zn2+ complexes formed the distorted tetrahedral geometry. Whereas, the HL(1-3)-Cu2+ complexes prefers distorted square-planar geometry. The BSSE corrected interaction energies of the studied complexes reveals that Cu2+ ion forms the most stable complexes with all three chalcone based Schiff bases. Of the three Schiff bases studied, the HL2 Schiff base acts as a potent chelating agent and forms the active metal complexes than the HL1 and HL3 Schiff bases. Further, the strength of the interaction follows the order as Cu2+?>?Ni2+?>?Co2+?>?Zn2+. The QTAIM analysis reveals that the interaction between the metal ions and coordinating ligand atoms are electrostatic dominant. The metal interaction increases the π-delocalisation of electrons over the entire chelate. Hence, the antimicrobial activity of the metal complexes is more effective than the free Schiff bases. Moreover, the HL(1-3)-Cu2+ complexes shows higher antimicrobial activities than the other complexes studied.  相似文献   

17.
The preparations and spectral properties are reported of a range of complexes of nalidixic acid (= HNal) with some metal ions in the series CrZn and also Mg, Ca, Cd, Hg and Pd(II). Most of the compounds formed by the divalent metal ions had a 2:1 HNal:metal ratio, and some of them are polymeric. Complexes in which the carboxylate group of HNal functions as a chelate were isolated with Cu(II), Pd(II), Fe(III) and Cr(III).  相似文献   

18.
Terpolymer bead particles (100-350 microm in diameter) were prepared by suspension radical polymerization from methacrylate esters [2,3-epoxypropyl methacrylate (GMA), 2-(2-hydroxyethoxy)ethyl methacrylate (DEGMA) and ethylene dimethacrylate (EDMA)] and subsequently derivatized affording iminodiacetic acid (IDA) chelating sorbents. The sorbents differed in pore volumes (0-0.7 cm3/g) and specific surface areas (0.03-9.8 m2/g) of their matrices as well as in the amounts of immobilized Ni2+-IDA complexes (0.03-1.58 mmol/g). The binding of imidazole was studied by frontal chromatography to evaluate the accessibility of Ni2+-IDA complexes. It was found that an increase in the bonded imidazole content with increasing immobilized Ni2+-IDA concentration was strongly dependent on the matrix morphology. A higher pore volume of the matrix significantly improved the utilizability of Ni2+-IDA complexes for imidazole binding. The performance of the sorbents based on two porous matrices with immobilized Ni2+-IDA concentration (0.1-1.58 mmol/g) differing in pore size distributions was compared in immobilized metal affinity chromatography (IMAC) of monoclonal mouse immunoglobulin IgG1 specific against human choriogonadotropic hormone (GTH-spec IgG1). The results have shown that sorbents based on matrix with large pores (up to 20 microm in diameter) exhibited high protein binding capacities. The GTH-spec IgG1 (Mw=158,000) was eluted from all the sorbents in its native form as was confirmed by MALDI-TOF.  相似文献   

19.
This study uses fluorescence spectroscopy to better understand the role of environmental metal ions in the interaction of charged herbicides with biochemical degradation product Suwannee River fulvic acid (SRFA). The interactions between the widely-used herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) (DCPPA) with Al3+ and the comparative metal Er3+ were probed at pH 4.0. Fluorescence experiments on binary solutions at pH 4.0 clearly indicated that Al3+ and Er3+ strongly interact with both SRFA and DCPPA alone in solution as demonstrated by fluorescence quenching with DCPPA and enhancement with SRFA by Al3+ and fluorescence quenching of both SRFA and DCPPA fluorescence by Er3+. Titrating Al3+ or Er3+ to SRFA-DCPPA quenched SRFA fluorescence as compared to the SRFA-metal ion binary complexes. Formation constants were determined using the Ryan-Weber model for the titration data. The DCPPA fluorescence results strongly support the formation of DCPPA-Al3+ and DCPPA-Er3+ complexes at pH values above the pKa (3.0) of DCPPA. Excitation and emission data obtained on ternary solutions of SRFA-Al3+-DCPPA and SRFA-Er3+-DCPPA complexes at pH 4.0 suggest that at this pH where the predominant DCPPA species is negatively-charged, Al3+ and Er3+ metal ions may function to “bridge” negatively-charged fulvic acids to negatively-charged pesticides. Fluorescence data collected on UV-irradiated ternary complexes indicate that both metals can also bridge DCPPA interactions with SRFA under those conditions. The results of our studies suggest that creation of a herbicide-free boundary corridor is recommended near mines and runoff areas with metal ions in surface waters to control possible complexation among fulvic acids, DCPPA and metal ions that maintains these molecules in a bioavailable state to plants and animals.  相似文献   

20.
With the aim of improving the compatibility of biomaterials to be used for the construction of cardiovascular prosthesis, we have designed bioactive macromolecules resulting from chemical modifications of hyaluronic acid (Hyal). The stability constants of Cu(II) and Zn(II) complexes with the sulphated derivative of hyaluronic acid (HyalS3.5) were evaluated. Two different complexes have been found for each metal ion, CuL, Cu(OH)2L and ZnL, Zn(OH)2L (L means the disaccharide unit of the ligands) in aqueous solution at 37 degrees C. The dihydroxo Cu(II) complex was present in high percentage at pH=7.4. On the contrary, the Zn(II) ion was present with a relatively low percentage of both complexes. The ability to stimulate endothelial cell adhesion and migration was evaluated for Hyal, HyalS3.5 and their complexes with Cu(II) and Zn(II) ions. The results revealed that Hyal and [Cu(OH)2HyalS3.5](4.5)- induced cell adhesion, while [ZnHyalS3.5](2.5)- and [Zn(OH)2HyalS3.5](4.5)- inhibited the process. The chemotactic activity of increasing concentrations of the above complexes was also evaluated, demonstrating that [Cu(OH)2HyalS3.5](4.5)- complex at 1 microM concentration was the most active in inducing cell migration. These results have been also strengthened by analysing adherent cell migration in agarose. In conclusion, sulphated hyaluronic acid coordinated to Cu(II) seems to be a promising matrix molecule for the construction of cardiovascular prosthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号