首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Ireland, the badger Meles meles L is a reservoir species for Mycobacterium bovis and, as such, contributes to the maintenance of bovine tuberculosis in cattle. A previous estimate of the badger population in the Republic was 200,000 badgers. In the current study, we obtained data on badger numbers from a large-scale badger removal project (the Four-Area project). The removal areas of the Four-Area Project were surrounded by barriers (either water or buffer areas where removals were also conducted) to prevent badger immigration. Within these areas, a grid of 0.25 km2 was created within which we knew the badger numbers and habitat types (based on Corine data). Associations between badger numbers and habitat type were investigated using negative binomial modeling. Extrapolations from the model yielded an estimated badger population in the Republic of approximately 84,000 badgers. The implications of these findings are discussed.  相似文献   

2.
Forty-five badgers representing five social groups were removed from an area in Staffordshire where tuberculosis had occurred in cattle. Prior to removal, the tuberculosis status of the badger population was investigated by screening faeces samples, collected at fortnightly intervals, and badger social-group territories were determined by bait-marking. Samples for cultural and biological examination were taken from the live badgers before euthanasia and detailed post-mortem examination. The adult badger population density was 6-2/km2 and Mycobacterium bovis was isolated from samples taken post mortem from eight (17-8%) badgers. The results are reviewed in relation to previous findings.  相似文献   

3.
Variation in climatic and habitat conditions can affect populations through a variety of mechanisms, and these relationships can act at different temporal and spatial scales. Using post‐mortem badger body weight records from 15 878 individuals captured across the Republic of Ireland (7224 setts across ca. 15 000 km2; 2009–2012), we employed a hierarchical multilevel mixed model to evaluate the effects of climate (rainfall and temperature) and habitat quality (landscape suitability), while controlling for local abundance (unique badgers caught/sett/year). Body weight was affected strongly by temperature across a number of temporal scales (preceding month or season), with badgers being heavier if preceding temperatures (particularly during winter/spring) were warmer than the long‐term seasonal mean. There was less support for rainfall across different temporal scales, although badgers did exhibit heavier weights when greater rainfall occurred one or 2 months prior to capture. Badgers were also heavier in areas with higher landscape habitat quality, modulated by the number of individuals captured per sett, consistent with density‐dependent effects reducing weights. Overall, the mean badger body weight of culled individuals rose during the study period (2009–2012), more so for males than for females. With predicted increases in temperature, and rainfall, augmented by ongoing agricultural land conversion in this region, we project heavier individual badger body weights in the future. Increased body weight has been associated with higher fecundity, recruitment and survival rates in badgers, due to improved food availability and energetic budgets. We thus predict that climate change could increase the badger population across the Republic of Ireland. Nevertheless, we emphasize that, locally, populations could still be vulnerable to extreme weather variability coupled with detrimental agricultural practice, including population management.  相似文献   

4.
This study reports for the first time data on the spatio-temporal ecology of badgers living in a cold and wet mountain region (Swiss Jura Mountains). The home range, movements, activity patterns and habitat use of three badgers (two males, one female) were examined using radiotelemetry. Average home range size was 320 ha (MCP 100%), but the ranging behaviour of badgers varied at a seasonal scale. As in other regions, badgers were strictly nocturnal or crepuscular and showed a marked reduction of activity in the winter period. From spring to autumn, animals were active for an average (±SD) of 8.1 ± 2.4 h and travelled up to 9,460 m each night (mean±SD, 5,160 ± 2,600 m). The nightly distance travelled by badgers was positively correlated with their travel speed, the duration of the activity period and the used area, but not with night length. Year-round, the radio-collared animals avoided pastures and the vicinity of houses during their night trips. In winter and spring, individual badgers used forests and wooded pastures more than expected according to their availability, whereas cereal fields were actively selected in summer and autumn. Den-watching, night-lighting and radio-tracking data suggest that badgers live in pairs in this wet and cold region. Population density estimates range from 0.4 to 1.5 individuals/100 ha. We discuss the importance of trophic resources and climate as factors influencing badger behavioural ecology.  相似文献   

5.
Effective management of infectious disease relies upon understanding mechanisms of pathogen transmission. In particular, while models of disease dynamics usually assume transmission through direct contact, transmission through environmental contamination can cause different dynamics. We used Global Positioning System (GPS) collars and proximity‐sensing contact‐collars to explore opportunities for transmission of Mycobacterium bovis [causal agent of bovine tuberculosis] between cattle and badgers (Meles meles). Cattle pasture was badgers’ most preferred habitat. Nevertheless, although collared cattle spent 2914 collar‐nights in the home ranges of contact‐collared badgers, and 5380 collar‐nights in the home ranges of GPS‐collared badgers, we detected no direct contacts between the two species. Simultaneous GPS‐tracking revealed that badgers preferred land > 50 m from cattle. Very infrequent direct contact indicates that badger‐to‐cattle and cattle‐to‐badger M. bovis transmission may typically occur through contamination of the two species’ shared environment. This information should help to inform tuberculosis control by guiding both modelling and farm management.  相似文献   

6.
Behavioural investigations into the transmission of bovine tuberculosis (Mycobacterium bovis) between badgers and cattle suggest that badger activity in farm buildings may incur a significant risk of cross-infection. However, measures to exclude badgers from buildings have not been systematically field-tested. In the present study, remote surveillance and radio-tracking were used to monitor the effect of electric fencing manipulations on the frequency of badger incursions into feed stores and cattle housing, and on badger ranging behaviour. Electric fencing was effective in preventing access to the farm buildings where it was installed and also significantly reduced incursions into unfenced buildings. Badger home range and core activity areas tended to increase in size when the fencing was installed, although they did not extend beyond the boundaries of the relevant social group territories. We discuss the logistical constraints of using electric fencing in this context and conclude that it is a potentially useful method of reducing contact between badgers and cattle, within farm buildings and yards.  相似文献   

7.
European badgers (Meles meles) in Ireland and the UK are a reservoir for Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). A number of interventions have been evaluated in attempts to control bovine TB within badger populations, and many of which rely on the capture of badgers. One strategy being implemented within Ireland is intramuscular vaccination using Bacillus Calmette-Guérin (BCG), as an alternative to badger culling. The success of vaccination as a disease control strategy depends on the ability to capture badgers and administer vaccines; thus, trapping success is crucial to effectively vaccinate the population (maximize vaccine coverage). A field vaccine trial was conducted in County Kilkenny, Ireland, from 2010–2013. We used data from this trial to evaluate the association between weather (precipitation and temperature data), badger sett characteristics, and badger trapping success. Approximately 10% of capture efforts resulted in a badger capture. Our results indicate that badger captures were the highest in drizzle, rain, and heavy rain weather conditions, and when minimum temperatures ranged from 3–8 °C. Badger captures were the highest at main setts (large burrow systems), and when sett activity scores were high (qualitative classes 4 or 5). Using local precipitation and temperature data in conjunction with observed sett characteristics provides wildlife managers with guidelines to optimize trapping success. Implementing capture operations under optimal conditions should increase the trapping success of badgers and allow for increased delivery of vaccines to manage bovine TB.  相似文献   

8.
Estimates of population size and trappability inform vaccine efficacy modelling and are required for adaptive management during prolonged wildlife vaccination campaigns. We present an analysis of mark-recapture data from a badger vaccine (Bacille Calmette–Guérin) study in Ireland. This study is the largest scale (755 km2) mark-recapture study ever undertaken with this species. The study area was divided into three approximately equal–sized zones, each with similar survey and capture effort. A mean badger population size of 671 (SD: 76) was estimated using a closed-subpopulation model (CSpM) based on data from capturing sessions of the entire area and was consistent with a separate multiplicative model. Minimum number alive estimates calculated from the same data were on average 49–51% smaller than the CSpM estimates, but these are considered severely negatively biased when trappability is low. Population densities derived from the CSpM estimates were 0.82–1.06 badgers km−2, and broadly consistent with previous reports for an adjacent area. Mean trappability was estimated to be 34–35% per session across the population. By the fifth capture session, 79% of the adult badgers caught had been marked previously. Multivariable modelling suggested significant differences in badger trappability depending on zone, season and age-class. There were more putatively trap-wary badgers identified in the population than trap-happy badgers, but wariness was not related to individual’s sex, zone or season of capture. Live-trapping efficacy can vary significantly amongst sites, seasons, age, or personality, hence monitoring of trappability is recommended as part of an adaptive management regime during large–scale wildlife vaccination programs to counter biases and to improve efficiencies.  相似文献   

9.
The badger, Meles meles, is a widely distributed mustelid in Eurasia and shows large geographic variability in morphological characters whose evolutionary significance is unclear and needs to be contrasted with molecular data. We sequenced 512 bp of the mitochondrial DNA control region in 115 Eurasian badgers from 21 countries in order to test for the existence of structuring in their phylogeography, to describe the genetic relationships among their populations across its widespread geographic range, and to infer demographic and biogeographic processes. We found that the Eurasian badger is divided into four groups regarding their mitochondrial DNA: Europe, Southwest Asia, North and East Asia, and Japan. This result suggests that the separation of badgers into phylogeographic groups was influenced by cold Pleistocene glacial stages and permafrost boundaries in Eurasia, and by geographic barriers, such as mountains and deserts. Genetic variation within phylogeographic groups based on distances assuming the Tamura-Nei model with rate heterogeneity and invariable sites (d(T-N) range: 3.3-4.2) was much lower than among them (d(T-N) range: 10.7-38.0), and 80% of the variation could be attributed to differences among regions. Spatial analysis of molecular variance (samova), median-joining network, and Mantel test did not detect genetic structuring within any of the phylogeographic groups with the exception of Europe, where 50% of variation was explained by differences among groups of populations. Our data suggest that the European, Southwest Asian, and North and East Asian badgers evolved separately since the end of Pliocene, at the beginnings of glacial ages, whereas Japanese badgers separated from continental Asian badgers during the middle Pleistocene. Endangered badgers from Crete Island, classified as Meles meles arcalus subspecies, were closely related to badgers from Southwest Asia. We also detected sudden demographic growth in European and Southwest Asian badgers that occurred during the Middle Pleistocene.  相似文献   

10.
In Great Britain and Ireland, badgers (Meles meles) are a wildlife reservoir of Mycobacterium bovis and implicated in bovine tuberculosis transmission to domestic cattle. The route of disease transmission is unknown with direct, so‐called “nose‐to‐nose,” contact between hosts being extremely rare. Camera traps were deployed for 64,464 hr on 34 farms to quantify cattle and badger visitation rates in space and time at six farm locations. Badger presence never coincided with cattle presence at the same time, with badger and cattle detection at the same location but at different times being negatively correlated. Badgers were never recorded within farmyards during the present study. Badgers utilized cattle water troughs in fields, but detections were infrequent (equivalent to one badger observed drinking every 87 days). Cattle presence at badger‐associated locations, for example, setts and latrines, were three times more frequent than badger presence at cattle‐associated locations, for example, water troughs. Preventing cattle access to badger setts and latrines and restricting badger access to cattle water troughs may potentially reduce interspecific bTB transmission through reduced indirect contact.  相似文献   

11.
Control of livestock diseases can become complicated when wild animals are involved. The Eurasian badger (Meles meles) is considered the principle wildlife host of Mycobacterium bovis (which causes bovine tuberculosis, bTB) in Great Britain and Ireland, but wild deer have also been implicated. Whether wild deer are likely to perpetuate bTB in cattle depends on the exposure risks they pose, the mode of pathogen transmission, the distances over which the disease can be transported and whether they can maintain infection within their own populations independently of other sources. We evaluated the likely host status of each of four species of wild British deer (red, roe, fallow and Reeves' muntjac) and the badger across a range of densities typically observed in Britain by manipulating the reproductive number equation proposed by Anderson and May (1991). We estimate that roe deer almost certainly act as spillover hosts at densities lower than 30 km−2, red deer below 16 km−2, muntjac below 6 km−2, fallow below 4 km−2 and the badger below 2 km−2. We also estimate that muntjac will almost certainly act as maintenance hosts at densities above 56 km−2, fallow above 47 km−2 and badgers above 24 km−2. For densities between these values, we cannot be certain of the host status of these species, and for red and roe deer we cannot be certain of host status under most natural conditions typically experienced in parts of Britain experiencing high incidence of bTB in cattle. However, enhanced transmission rates resulting from artificially high densities such as might be experienced at supplementary feeding sites may be sufficient to promote independent maintenance of infection. We were not able to confidently assign host status to any species over a wide range of densities, but conclude that this is likely to reflect reality, where host status may be affected as much by, for example, demographic fluctuations as it is by population density. Our results imply densities below which populations of wild deer inhabiting cattle bTB hotspots ought to be maintained in order to control the possibility of them perpetuating the cycle of intra- and interspecific M. bovis transmission.  相似文献   

12.
张广才岭藏獾洞穴生境选择   总被引:1,自引:1,他引:0  
李路云  杨会涛  滕丽微  刘振生 《生态学报》2015,35(14):4836-4842
2008年9月至2009年8月,在黑龙江省方正林业局新风林场,用不定宽样线法对藏獾洞穴生境选择进行研究,共记录了55组藏獾洞穴,藏獾洞口平均直径为(27.40±7.15)cm,洞深平均为(84.18±22.04)cm,倾角平均为(26.36±9.10)°,洞口总数=3.02个常用洞数+0.80个不常用洞数+0.56个废弃洞数。相对于对照样方而言,藏獾洞穴更偏爱选择位于郁闭度和植被盖度小,灌木密度大、距离近,乔木距离远,距水源和农田近、人为干扰距离远,坡度较缓的向阳中坡位的生境。资源选择函数模型为:logit(p)=246.980-1.059×植被盖度-0.703×距水源距离-1.403×坡度-45.005×坡向,模型的正确预测率为93.9%。  相似文献   

13.
Bovine tuberculosis is a disease of historical importance to human health in the UK that remains a major animal health and economic issue. Control of the disease in cattle is complicated by the presence of a reservoir species, the Eurasian badger. In spite of uncertainty in the degree to which cattle disease results from transmission from badgers, and opposition from environmental groups, culling of badgers has been licenced in two large areas in England. Methods to limit culls to smaller areas that target badgers infected with TB whilst minimising the number of uninfected badgers culled is therefore of considerable interest. Here, we use historical data from a large-scale field trial of badger culling to assess two alternative hypothetical methods of targeting TB-infected badgers based on the distribution of cattle TB incidents: (i) a simple circular ‘ring cull’; and (ii) geographic profiling, a novel technique for spatial targeting of infectious disease control that predicts the locations of sources of infection based on the distribution of linked cases. Our results showed that both methods required coverage of very large areas to ensure a substantial proportion of infected badgers were removed, and would result in many uninfected badgers being culled. Geographic profiling, which accounts for clustering of infections in badger and cattle populations, produced a small but non-significant increase in the proportion of setts with TB-infected compared to uninfected badgers included in a cull. It also provided no overall improvement at targeting setts with infected badgers compared to the ring cull. Cattle TB incidents in this study were therefore insufficiently clustered around TB-infected badger setts to design an efficient spatially targeted cull; and this analysis provided no evidence to support a move towards spatially targeted badger culling policies for bovine TB control.  相似文献   

14.
15.
The European Badger (Meles meles) has been implicated in the epidemiology of bovine tuberculosis in cattle populations in the Republic of Ireland. Badger populations have been subject to a culling regime in areas with chronic histories of bTB cattle herd breakdowns. Removal data from 2004 to 2010 were used to model the impact of culling on populations in areas under capture. Additionally, changes in field signs of badger activity were used as an index of abundance to support, or otherwise, the outcomes of the removal models. Significant reductions in standardised badger captures over time were found across three large study areas (total area, 1,355 km2). Assuming that all inactive setts were vacant, an overall linear trend model suggested that badger captures had decreased by 78 % for setts with 6 years of repeated capturing operations. Given the uncertainty associated with the relationship between sett activity and badger presence, we repeated the linear modelling using two ‘what if’ scenarios. Assuming that individual badgers were missed on 10 % or 20 % of occasions at inactive setts, the estimated decline over 6 years is lowered to 71 % or 64 %, respectively. The decline profile consisted of a steep initial decrease in captures within the first 2 years, followed by a more gradual decrease thereafter. The number of active openings at setts (burrows) declined significantly in all three areas; but the magnitude of this decline varied significantly amongst study areas (41–82 %). There was a significant increase in the probability of setts becoming dormant with time. The removal programme was more intense (mean, 0.45 badgers culled km?2 year?1) than previous experimental badger removals in Ireland but some captures may be attributed to immigrant badgers as no attempt was made to limit inward dispersal from areas not under management. Results from this study suggest that significant reductions in badger density occurred in the areas where management had taken place. Since other non-culled badger populations in Northern Ireland and Britain exhibited stable population trends, we attribute the reduction in relative abundance to the culling regime. Further studies of the dynamics of this reduction are required to quantify how it is counteracted by immigration from populations outside of culled areas.  相似文献   

16.
As the European badger (Meles meles) can be of conservation or management concern, it is important to have a good understanding of the species’ dispersal ability. In particular, knowledge of landscape elements that affect dispersal can contribute to devising effective management strategies. However, the standard approach of using Bayesian clustering methods to correlate genetic discontinuities with landscape elements cannot easily be applied to this problem, as badger populations are often characterized by a strong confounding isolation‐by‐distance (IBD) pattern. We therefore developed a two‐step method that compares the location of pairs of related badgers relative to a putative barrier and utilizes the expected spatial genetic structure characterized by IBD as a null model to test for the presence of a barrier. If a linear feature disrupts dispersal, the IBD pattern characterising pairs of individuals located on different sides of a putative barrier should differ significantly from the pattern obtained with pairs of individuals located on the same side. We used our new approach to assess the impact of rivers and roads of different sizes on badger dispersal in western England. We show that a large, wide river represented a barrier to badger dispersal and found evidence that a motorway may also restrict badger movement. Conversely, we did not find any evidence for small rivers and roads interfering with badger movement. One of the advantages of our approach is that potentially it can detect features that disrupt gene flow locally, without necessarily creating distinct identifiable genetic units.  相似文献   

17.
Fisheries are recognised as a major threat to sea turtles worldwide. Oceanic driftnets are considered the main cause of the steep decline in Pacific Ocean populations of the leatherback sea turtle Dermochelys coriacea. The world’s largest leatherback population nests in West Africa and migrates across the Atlantic Ocean to feed off the South American coast. There, the turtles encounter a range of fisheries, including the Brazilian driftnet fishery targeting hammerhead sharks. From 2002 to 2008, 351 sea turtles were incidentally caught in 41 fishing trips and 371 sets. Leatherbacks accounted for 77.3% of the take (n = 252 turtles, capture rate = 0.1405 turtles/km of net), followed by loggerheads Caretta caretta (47 individuals, capture rate = 0.0262 turtles/km of net), green turtles Chelonia mydas (27 individuals, capture rate = 0.0151 turtles/km of net) and unidentified hard-shelled turtles (25 individual, capture rate = 0.0139 turtles/km of net) that fell off the net during hauling. Immediate mortality (i.e., turtles that were dead upon reaching the vessel, excluding post-release mortality) was similar among the species and accounted for 22.2 to 29.4% of turtles hauled onboard. The annual catch by this fishery ranged from 1,212 to 6,160 leatherback turtles, as estimated based on bootstrap procedures under different fishing effort scenarios in the 1990s. The present inertia in law and enforcement regarding gillnet regulations in Brazil could result in the reestablishment of the driftnet fishery, driving rates of leatherback mortality to levels similar to those observed in previous decades. This development could potentially lead to the collapse of the South Atlantic leatherback population, mirroring the decline of the species in the Pacific. In light of these potential impacts and similar threats to other pelagic mega fauna, we recommend banning this type of fishery in the region.  相似文献   

18.
In the UK and Ireland, research on the control of bovine tuberculosis in badgers includes the development of a palatable bait for oral delivery of a vaccine and a means of its deployment in the field. In the present study, we carried out field deployment of bait according to the established method of bait marking in early spring and early summer to compare the effects of seasonality on bait uptake rates. All baits contained rhodamine B (RhB) which was subsequently detected in the hair and whiskers of captured badgers. During the 8 days of bait feeding at 14 badger setts, 99% of baits deployed in spring, and 100% of those deployed in summer were removed. The presence of RhB in captured badgers indicated high rates of uptake amongst adult badgers in spring (93%) and summer (98%). Only cubs captured in summer showed evidence of having taken bait (91%). Between 67% and 100% of each social group was estimated to have taken bait. The detection of RhB in 96% of badgers captured at outlier setts, where bait was not fed, suggested that deployment at main setts alone may be sufficient to target a relatively high proportion of the badger population. The number of baits deployed per marked badger suggested that a similar level of uptake might be achievable using fewer baits. The results clearly demonstrate the potential value of the bait-marking methodology for delivering vaccine baits to badgers during spring and summer, but that deployment in early summer is necessary to target cubs.  相似文献   

19.
The 6.5 Ha Nonsuch island nature reserve in Castle harbour, Bermuda, under restoration as a “Living museum” of Bermuda’s pre-colonial terrestrial flora and fauna since 1962, was unexpectedly compromised by the colonization of a manmade freshwater pond by the invasive Cane toad Bufo marinus, which managed to cross a 175 m seawater barrier isolating the island. The toad was considered to pose a threat to the endemic Skink, for which Nonsuch is a key sanctuary, and to the burrow nesting Bermuda petrel or Cahow, which was about to be translocated to that larger island in order to establish a colony safe from the global warming threat of sealevel rise. A non-lethal method of removing the toads was devised through installation of a toad barrier around the freshwater pond, constructed of robust high density polyethylene (HDPE). Toads outside the barrier were no longer able to breed and were captured and removed by night searches over a five year period as they piled up against it. Removal of the breeding population inside the barrier was only possible by capturing all individuals resulting from each spawning before they could reach breeding age. This also took 5 years despite the small size (0.06 Ha) of the pond. A total of 1,244 toads were removed to Bermuda’s mainland. As breeding age is attained in 2 years the collection total for the first 2 years provided an approximation of the population density on the island before removal began (~80 per Ha). Although the immigration rate to Nonsuch is estimated to be less than one per year, this still requires maintaining the barrier as a permanent fixture. As future immigrants can be fairly quickly intercepted, the toad is now essentially extaxic on Nonsuch. This is the first published report of a successful eradication of the species from an island with breeding habitat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号