首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   

2.
The growth of surplus brewers' yeast in a fed-batch process was studied with the aim of increasing the fermentation activity of the yeast cells and of optimizing the growth conditions: 20 h cultivation at 30° C and pH 5.0–5.5 using beet molasses as substrate, with a regulated feeding rate, showed satisfactory results. Under the chosen conditions, the final amount of biomass increased more than fivefold, achieving a specific growth rate of 0.1 h–1 and substrate yield coefficient of 0.54 g·g–1. The increase in fermentation activity of yeast cells during cultivation correlated very well with the concentration of reduced glutathione, which increased from 1.2 to 2.7 mg·g–1 (dry matter). At the same time the fermentation activity increased fivefold, which related to the nitrogen content of the yeast cells. Ethanol formation throughout the cultivation did not exceed 0.5 g·l–1. Correspondence to: B. Strel  相似文献   

3.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

4.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production.  相似文献   

5.
AIMS: Nutrient-limited atrazine catabolism study in continuous cultures with biomass retention to mimic in situ environmental conditions and thus gain insight of the efficacy of biosupplementation/biostimulation to eliminate reduced herbicide bioavailability. METHODS AND RESULTS: Carbon- and nitrogen-limited retentostat (1 and 5 l) cultivation of a combined atrazine (100 mg l-1)-catabolizing association KRA30 was made. As a nitrogen source, through citrate supplementation, increased herbicide catabolism resulted and was complete in the absence of NH4-N. Co-metabolism of the molecule in the presence of succinate was identified. Population characterization by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) indicated component species numerical dominance shifts in response to changes in nutrient limitation, mineral salts composition and biofilm formation, although the total species complement and catabolic potential were retained. CONCLUSIONS: Biomass and catabolic capacity maintenance, through cost-effective biosupplementation/biostimulation, should promote atrazine bioavailability and so ensure successful amelioration. SIGNIFICANCE AND IMPACT OF THE STUDY: All planning, implementation and monitoring of bioremediation programmes should be underpinned by a combination of molecular and (continuous) culture-based methods.  相似文献   

6.
Summary The cell-associated and exocellular hemicellulolytic polysaccharide depolymerase and glycoside hydrolase activity ofBacillus macerans NCDO 1764 was monitored over a range of anaerobic growth conditions in batch and continuous culture. The enzymes were detectable throughout the complete growth cycle in batch culture reaching and maintaining maximum levels in the stationary phase. In continuous culture enzyme activity was largely independent of growth rate (D=0.025–0.1 h-1) although the activity was reduced at higher dilution rates (0.125–0.15 h-1). Although activity was detectable over a wide pH range (pH 5.5–7.5) it was pH dependent, and maximum activities of both the cell-associated and exocellular enzymes were measured in cultures maintained at pH 6.5–7.0±0.1.The principal metabolites formed anaerobically from xylose byB. macerans in batch and continuous culture were acetic acid, formic acid and ethanol which represented 95–99% of the products formed. Smaller amounts of acetone,d,l-lactic acid and succinic acid were formed together with traces of butyric acid (<5 nmol/ml) and isovaleric acid (<25 nmol/ml). The proportions of the metabolites produced varied with growth conditions and were influenced by the pH of the culture and the rate and stage of growth of the microorganism.  相似文献   

7.
Lactobacillus plantarum produced an extracellular tannase after 24 h growth on minimal medium of amino acids containing 2 g tannic acid l–1. Enzyme production (6 U ml–1) was optimal at 37 °C and pH 6 with 2 g glucose l–1 and 7 g tannic acid l–1 in absence of O2.  相似文献   

8.
Two serine carboxypeptidases, MpiCP-1 and MpiCP-2, were purified to homogeneity from Monascus pilosus IFO 4480. MpiCP-1 is a homodimer with a native molecular mass of 125 kDa composed of two identical subunits of 61 kDa, while MpiCP-2 is a high mass homooligomer with a native molecular mass of 2,263 kDa composed of about 38 identical subunits of 59 kDa. This is unique among carboxypeptidases and distinguishes MpiCP-2 as the largest known carboxypeptidase. The two purified enzymes were both acidic glycoproteins. MpiCP-1 has an isoelectric point of 3.7 and a carbohydrate content of 11%, while for MpiCP-2 these values were 4.0 and 33%, respectively. The optimum pH and temperature were around 4.0 and 50°C for MpiCP-1, and 3.5 and 50°C for MpiCP-2. MpiCP-1 was stable over a broad range of pH between 2.0 and 8.0 at 37°C for 1 h, and up to 55°C for 15 min at pH 6.0, but MpiCP-2 was stable in a narrow range of pH between 5.5 and 6.5, and up to 50°C for 15 min at pH 6.0. Phenylmethylsulfonylfluoride strongly inhibited MpiCP-1 and completely inhibited MpiCP-2, suggesting that they are both serine carboxypeptidases. Of the substrates tested, benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu) was the best for both enzymes. The Km, Vmax, Kcat and Kcat/Km values of MpiCP-1 for Z-Tyr-Glu at pH 4.0 and 37°C were 1.33 mM, 1.49 mM min–1, 723 s–1 and 545 mM–1 s–1, and those of MpiCP-2 at pH 3.5 and 37°C were 1.55 mM, 1.54 mM min–1, 2,039 s–1 and 1,318 mM–1 s–1, respectively.  相似文献   

9.
The effects of atrazine on cotyledon cultures of Capsicum annuum (L.) cv. G4 were investigated with a view of establishing a system for in vitro selection of resistant mutants. At low levels of herbicide produced little growth inhibition, some chlorophyll loss occurred associated with the production of albino shoots. At 20 mg l−1 atrazine bleaching was more pronounced and was accompanied by the development of necrotic spots; however, efficient bleaching was associated with severe suppression of growth. Mutagenized cotyledon explants resulted in production of herbicide-resistant plants on medium containing selective levels of sucrose (0.5%) and atrazine (20 mg l−1). Differential morphogenetic responses were observed when the levels of sucrose (0.5–5%) were altered. Shoot regeneration was maximum in 2 sucrose and the regenerating ability decreased with a further increase in sucrose concentration (3%–5%). However, lowering of sucrose concentration from 2 to 0.5% caused complete bleaching of explants and permitted the selection of herbicide-resistant plants. Complete atrazine-resistant plantlets were obtained after rooting of regenerated green shoots on rooting medium containing 10 mg l−1atrazine, 1.0 mg l−1IAA and 0.5% sucrose. Leaf-segment assay of differentiated plants revealed that all regenerants were resistant to the atrazine. Reciprocal crosses between atrazine-resistant and -sensitive plants showed a non-Mendelian transmission of resistance trait.  相似文献   

10.
Summary The effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes from glucose was investigated in a microaerobic continuous culture. At a dilution rate of 0.20 h–1 and a fixed oxygen uptake rate (OUR) of 31.5 mmol l–1 h–1 the biomass concentration increased with pH ranging from 5.0 to 7.0, while the specific ATP requirement of the cells decreased. In the pH range 5.5–6.5 the product concentration (butanediol + acetoin) was maximal and nearly constant. However, the specific production continuously declined with increasing pH. Experiments with addition of acetic acid showed that the various effects of pH are due to inhibition of the by-product acetic acid on cell growth. The strength of the acetic and inhibition depended only on the concentration of its undissociated form [HAc]. The biomass concentration and the specific OUR were also only functions of [HAc], irrespective of the pH. Although the specific ATP requirement (q ATP) strongly depended on the pH, [HAc] at constant pH. Offprint requests to: W.-D. Deckwer  相似文献   

11.
The production of an alkali-stable xylanase, with dual pH optima, from haloalkalophilic Staphylococcus sp. SG-13 has been enhanced using agro-residues in submerged fermentation and a biphasic growth system. The agro-residues such as wheat bran, sugarcane bagasse, corncobs and poplar wood when used as sole carbon source, improved the xylanase yield by five-fold as compared to xylose and xylan. Staphylococcus sp. SG-13 also produced equally good amounts of xylanase when grown simply in deionized water (pH 8.0) supplemented with agro-residues as sole carbon source. In the biphasic growth system (lower layer containing agricultural residue set in agar medium with liquid medium above it), the prime substrate, wheat bran (1% w/v), resulted in maximum xylanase production of 4525 U l–1 (pH 7.5) and 4540 U l–1 (pH 9.2) at an agar: broth ratio of 4.0 after 48 h of incubation at 37 °C under static conditions. In general, the cost-effective agro-residues were found to be more suitable inducers for xylanase production over expensive substrates like xylan.  相似文献   

12.
The pH control was important for curdlan production with Agrobacterium sp. ATCC31750. Specific cell growth rate was the highest at pH 7 and the specific curdlan production rate was at pH 5.5. The pH profiles maximizing curdlan production was changed from pH 7 optimal for cell growth to pH 5.5 optimal for curdlan production after ammonium consumption. The feedback inferential control methods, with easily measurable variables such as NaOH addition for pH control and dissolved oxygen (DO), were also applied. The pH was successfully controlled to follow optimal profiles and the maximal production of curdlan (60 g l–1 in 120 h) was achieved with feedback optimal control.  相似文献   

13.
Two cultures, a yeast (Rhodorula rubra GED8) and a yogurt starter (Lactobacillus bulgaricus 2–11+Streptococcus thermophilus 15HA), were selected for associated growth in whey ultrafiltrate (WU) and active synthesis of carotenoids. In associated cultivation with the yogurt culture L bulgaricus 2–11+S. thermophilus 15HA under intensive aeration (1.3 l–1min–1 air-flow rate) in WU (45 g lactose l–1), initial pH 5.5, 30 °C, the lactose-negative strain R. rubra GED8 synthesized large amounts of carotenoids (13.09 mg l–1 culture fluid). The carotenoid yield was approximately two-fold higher in association with a mixed yogurt culture than in association with pure yogurt bacteria. The major carotenoid pigments comprising the total carotenoids were -carotene (50%), torulene (12.3%) and torularhodin (35.2%). Carotenoids with a high -carotene content were produced by the microbial association 36 h earlier than by Rhodotorula yeast species. No significant differences were notd in the ratio between the pigments synthesized by R. rubra GED8+L. bulgaricus 2–11, R. rubra GED8+S. thermophilus 15HA, and R.rubra GED8+yogurt culture, despite the fact that the total carotenoid concentrations were lower in the mixed cultures with pure yogurt bacteria.  相似文献   

14.
Of 14 potential sulfur-oxidizing strains, Pseudomonas sp. B21 and Agrobacterium sp. B19 were considered as denitrifiers. Under aerobic conditions, with S0 as electron donor, maximum cell growth rates were 0.022 (B21) and 0.043 h–1 (B19). Both grew optimally at pH 7.5 and 28 °C. When NO3-N was increased from 10 to 200 mg l–1 the efficiency of nitrate removal of each strain gradually decreased, from 60 to 40%. Addition of suitable organic compounds (C/N < 4.2) increased the nitrate removal efficiencies of both strains, indicating their mixotrophic characters.  相似文献   

15.
Summary The pink-pigmented, amylolytic and pectinolytic bacterium Clostridium puniceum in anaerobic batch culture at pH 5.5 and 25–30°C produced butan-1-ol as the major product of fermentation of glucose or starch. The alcohol was formed throughout the exponential phase of growth and surprisingly little acetone was simultaneously produced. Furthermore, acetic and butyric acids were only accumulated in low concentrations, and under optimal conditions were completely re-utilised before the fermentation ceased. Thus, in a minimal medium containing 4% w/v glucose as sole source of carbon and energy, after 65 h at 25°C, pH 5.5 all of the glucose had been consumed to yield (g product/100 g glucose utilised) butanol 32, acetone 3 and ethanol 2. Butanol was again the major product of glucose fermentation during phosphate-limited chemostat culture wherein, although the organism eventually lost its capacity to sporulate and to synthesize granulose, production of butanol continued for at least 100 volume changes. Under no growth condition was the organism capable of producing more than 13.3 g l-1 of butanol. At pH 5.5, growth on pectin was slow and yielded a markedly lesser biomass concentration than when growth was on glucose or starch; acetic acid was the major fermentation product with lower concentrations of methanol, acetone, butanol and butyric acid. At pH 7, growth on all substrates produced virtually no solvents but high concentrations of both acetic and butyric acids.  相似文献   

16.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

17.
Denitrification was studied in anoxic batch cultures of a simulated fish processing wastewater at 37 r C and pH 7.5, using a denitrifying enrichment culture from fishery wastewater. Different initial nitrate to biomass ratios (So/Xo) were used: nitrate and biomass varied from 7.5 to 94.7 mg NO3-N l–1, and from 20 to 4300 mg volatile suspended solids l–1, respectively. The specific maximum denitrification rate (r m) and the cell yield (Y X / S) depended on the So/Xo ratio under anoxic conditions: r m increased from 1.2 to 1584 mg NO3-N g–1 VSS h–1 and Y X / S decreased from 42 to 0.03 mg VSS mg–1 NO3-N when So/Xo varied from 5.5 10– 3 to 9.3 mg NO3-N/mg VSS. Nomenclature CNO3 – N nitrate concentration, mg NO3-N l–1 K S saturation constant, mg NO3-N l–1 r m specific maximum denitrification rate, mg NO3-N g–1 VSS h–1 So initial substrate concentration, mg l–1 t time, h TOC total organic carbon VSS volatile suspended solids x biomass concentration, g VSS l–1 Xo initial biomass concentration, g VSS l–1 Y X/S substrate to biomass cell yield, mg VSS/mg N Greek symbols: m maximum specific growth rate of the anoxic microbial population, 1 h–1  相似文献   

18.
Two strains ofLeptospirillum-like bacteria, L6 and L8, have been isolated from a mixed inoculum, also containingThiobacillus ferrooxidans andT. thiooxidans, cultured for one year with a colbaltiferous pyrite as energy substrate in a 100 I continuous bioleaching laboratory unit. Several physiological properties of the strains are described. The vibrio-shaped microorganisms grew at pH values lower than 1.3. Their growth rate was maximum between 2.5 and 8.0 g l1 ferrous iron. The optimal growth temperature was 37.5° C. Ferric iron had a stimulative effect on bacterial development up to 8 g l–1, and growth was as rapid at 14 g l–1 ferric iron as at 8 g l–1. The negative influence of cobalt on the final cell concentration was observed at 0.5 g l–1, but the growth rate was not affected up to 2 g l–1. The G + C content of strains L8 is 55.6 mol%.  相似文献   

19.
Summary In a mineral salts medium containing yeast extract, NH4Cl and glucose (50g/L), the pH range producing the fastest growth ofZ. mobilis was 5.5–6.5 with an apparent optimum at 6.5. At constant growth rate of 0.15hr–1, the specific rates of glucose utilization (qs) and ethanol production (qp) were relatively unaffected by pH over the range 7.0–5.5 but increased sharply as the pH was further decreased below 5.5 to 4.0. Under these conditions the ethanol yield was unaffected by pH over the range 4.0–6.5 but decreased markedly at pH of 7.  相似文献   

20.
A novel intracellular glucosyltransferase (GTase) was isolated from cells of Actinoplanes sp. CKD485-16—acarbose-producing cells. The enzyme was purified by DEAE-cellulose and G75-40 Sephadex chromatography. The molecular mass of the enzyme was estimated to be 62 kDa by SDS-polyacrylamide gel electrophoresis, and its isoelectric point (pI) was pH 4.3. The N-terminal sequence of the GTase consisted of NH2-Ser-Val-Pro-Leu-Ser-Leu-Pro-Ala-Glu-Trp. The optimum pH and temperature were 7.5 and 30°C. The enzyme was stable in a pH range of 5.5–9.0 and below 40°C. Enzymatic reactions were performed by incubating the GTase with various substrates. The GTase converted acarbose into component C, maltose into trehalose, and maltooligosaccharides into maltooligosyl trehaloses. The reactions were reversible. Various acarbose analogs were tested as inhibitors against the GTase as a means to suppress component C formation. Valienamine was the most potent, with an IC50 value of 2.4×10–3 mM and showed a competitive inhibition mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号