首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclopentenone prostaglandins (PGs) are known to arrest the cell cycle at the G(1) phase in vitro and to suppress tumor growth in vivo. However, their effects on neurons are unclear. Here, we report that some cyclopentenone PGs function as neurite outgrowth-promoting factors. They promoted neurite outgrowth from PC12 cells and from dorsal root ganglion explants but only in the presence of nerve growth factor (NGF). We refer to these PGs as neurite outgrowth-promoting PGs (NEPPs). Through study of the structure-function relationship of NEPP1-10 and related compounds, we found that the cross-conjugated dienone moiety of NEPPs was essential for promoting neurite outgrowth, and NEPP10 was concluded to be the best candidate for drug development. We also investigated the intracellular mechanism of the promotion by NEPPs and obtained evidence that immunoglobulin heavy chain binding protein/glucose-regulated protein 78 (BiP/GRP78) plays a role in the promotion, based on the following observations: Antisense nucleotides for BiP/GRP78 gene blocked the promotion of neurite outgrowth; BiP/GRP78 protein level increased in response to NEPPs; and overexpression of BiP/GRP78 protein by adenoviral gene transfer promoted the neurite outgrowth by NGF.  相似文献   

2.
Laminin is a potent stimulator of neurite outgrowth in a variety of primary neurons and neuronal cell lines. Here, we investigate the role of nitric oxide in the signaling mechanism of laminin-mediated neurite outgrowth in the PC12 cell line. Within 8 s of exposure to laminin, PC12 cells produce nitric oxide. Peak laminin-induced nitric oxide levels reach 8 nM within 12 s of exposure to laminin and constitutive nitric oxide production is sustained for 1 min. A neurite outgrowth promoting synthetic peptide (AG73), derived from the laminin-1-alpha globular domain, also stimulated nitric oxide release. The nitric oxide synthase inhibitor, 1-NAME, prevents the formation of nitric oxide and here, 1-NAME inhibited both laminin-mediated and AG73-mediated neurite outgrowth by 88 and 95%, respectively. In contrast, C16, a synthetic peptide derived from the laminin-1-gamma chain, is shown here to promote PC12 cell attachment, but not neurite outgrowth. Interestingly, the C16 peptide did not activate nitric oxide release, suggesting that laminin-induced nitric oxide release in PC12 cells is associated only with neurite outgrowth promoting laminin domains and signals. In addition, the data here show that the nitric oxide released by PC12 cells in response to laminin is required as a part of the mechanism of laminin-mediated neurite outgrowth.  相似文献   

3.
Flavonoids target a variety of pathophysiological mechanisms and are therefore increasingly considered as compounds encompassed with therapeutic potentials in diseases such as cancer, diabetes, arteriosclerosis, and neurodegenerative diseases and mood disorders. Hops (Humulus lupulus L.) is rich in flavonoids such as the flavanone 8-prenylnaringenin, which is the most potent phytoestrogen identified so far, and the prenylchalcone xanthohumol, which has potent tumor-preventive, anti-inflammatory and antiviral activities. In the present study, we questioned whether hops-derived prenylflavonoids and synthetic derivatives thereof act on neuronal precursor cells and neuronal cell lines to induce neuronal differentiation, neurite outgrowth and neuroprotection. Therefore, mouse embryonic forebrain-derived neural precursors and Neuro2a neuroblastoma-derived cells were stimulated with the prenylflavonoids of interest, and their potential to activate the promoter of the neuronal fate-specific doublecortin gene and to stimulate neuronal differentiation and neurite outgrowth was analyzed. In this screening, we identified highly “neuroactive” compounds, which we termed “enhancement of neuronal differentiation factors” (ENDFs). The most potent molecule, ENDF1, was demonstrated to promote neuronal differentiation of neural stem cells and neurite outgrowth of cultured dorsal root ganglion neurons and protected neuronal PC12 cells from cobalt chloride-induced as well as cholinergic neurons of the nucleus basalis of Meynert from deafferentation-induced cell death. The results indicate that hops-derived prenylflavonoids such as ENDFs might be powerful molecules to promote neurogenesis, neuroregeneration and neuroprotection in cases of chronic neurodegenerative diseases, acute brain and spinal cord lesion and age-associated cognitive impairments.  相似文献   

4.
The structurally similar compounds staurosporine and K252a are potent inhibitors of protein kinases. K252a has previously been reported to inhibit most or all of the effects of nerve growth factor (NGF) on PC12 pheochromocytoma cells, and staurosporine has been reported both to inhibit and to mimic NGF-induced neurite outgrowth from a PC12 cell subclone in a dose-dependent manner. We have studied the interactions of these agents with each other, with NGF, and with forskolin, an activator of adenylate cyclase, on the parent PC12 cell line and on normal neonatal and adult rat chromaffin cells. Staurosporine alone or in conjunction with forskolin induces outgrowth of short neurites from PC12 cells but does not substitute for NGF in promoting cell survival. It does not abolish NGF-induced neurite outgrowth but does reverse the effects of NGF on catecholamine synthesis. K252a abolishes NGF-induced neurite outgrowth but only partially decreases outgrowth induced by NGF plus forskolin. It does not inhibit neurite outgrowth produced by staurosporine or staurosporine plus forskolin. These findings with PC12 cells suggest that staurosporine might act downstream from K252a and NGF on components of one or more signal transduction pathways by which NGF selectively affects the expression of certain traits. Both neonatal and adult rat chromaffin cells show dramatic flattening and extension of filopodia in response to staurosporine, an observation suggesting that some of the same pathways might remain active in cells that do not exhibit a typical NGF response. Only a small amount of neurite outgrowth is observed, however, and only in neonatal cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Ginkgo biloba extracts have been postulated to beneficial for improving cognitive function and as such they have been used as a potential treatment of Alzheimer’s disease. The main active ingredients of the extract are terpene trilactones (TTLs), such as bilobalide (BB) and ginkgolides. Several structure–activity relationship (SAR) studies using ginkgolide scaffolds produced more biologically potent species by modification of the lactone moieties. However, modifications of BB scaffold have been limited, and no SAR studies on BB have been accomplished to date. Thus, the aim of this study was to elucidate how the modification of the lactone moieties of BB would affect their biological activities in a number of assays, including proliferating cell activity, neuroprotective effects against Aβ (1–40) peptides, and neurite outgrowth effects in PC12 neuronal cells. It appeared that the derivatives containing lactone groups showed similar biological activity to native BB, while those that possessed no lactone moieties exhibited lower neurite outgrowth effects. Thus, the results suggested that the lactone moieties of BB played an important role in exerting neurite outgrowth effects in PC12 cells.  相似文献   

6.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

7.
Many of the physiological benefits attributed to flavonoids are thought to stem from their potent antioxidant and free radical scavenging properties. Recently, it was shown that flavonoids protect nerve cells from oxidative stress by multiple mechanisms, only one of which is directly related to their antioxidant activity, suggesting that specific flavonoids may have other properties that could make them useful in the treatment of conditions that lead to nerve cell death. In particular, it was asked if any flavonoid could mimic neurotrophic proteins. To examine this possibility, we looked at the ability of flavonoids to induce nerve cell differentiation using PC12 cells. PC12 cells were treated with a variety of flavonoids to determine if there was a correlation between their neuroprotective activity and their neurite outgrowth-promoting activity. In addition, the signaling pathways required for flavonoid-induced differentiation were examined. We found that only a small subset of the flavonoids that were neuroprotective could induce neurite outgrowth by an extracellular signal-regulated kinase-dependent process. There was a strong correlation between the concentrations of the flavonoids that were neuroprotective and the concentrations that induced differentiation. These results suggest that the consumption of specific flavonoids could have further beneficial effects on nerve cells following injury, in pathological conditions or in normal aging.  相似文献   

8.
Microtubules (MTs), key cytoskeletal elements in living cells, are critical for axonal transport, synaptic transmission, and maintenance of neuronal morphology. NAP (NAPVSIPQ) is a neuroprotective peptide derived from the essential activity-dependent neuroprotective protein (ADNP). In Alzheimer’s disease models, NAP protects against tauopathy and cognitive decline. Here, we show that NAP treatment significantly affected the alpha tubulin tyrosination cycle in the neuronal differentiation model, rat pheochromocytoma (PC12) and in rat cortical astrocytes. The effect on tubulin tyrosination/detyrosination was coupled to increased MT network area (measured in PC12 cells), which is directly related to neurite outgrowth. Tubulin beta3, a marker for neurite outgrowth/neuronal differentiation significantly increased after NAP treatment. In rat cortical neurons, NAP doubled the area of dynamic MT invasion (Tyr-tubulin) into the neuronal growth cone periphery. NAP was previously shown to protect against zinc-induced MT/neurite destruction and neuronal death, here, in PC12 cells, NAP treatment reversed zinc-decreased tau-tubulin-MT interaction and protected against death. NAP effects on the MT pool, coupled with increased tau engagement on compromised MTs imply an important role in neuronal plasticity, protecting against free tau accumulation leading to tauopathy. With tauopathy representing a major pathological hallmark in Alzheimer''s disease and related disorders, the current findings provide a mechanistic basis for further development. NAP (davunetide) is in phase 2/3 clinical trial in progressive supranuclear palsy, a disease presenting MT deficiency and tau pathology.  相似文献   

9.
Olanzapine, an atypical antipsychotic drug, was previously shown to protect neuronal cells against nutrient deprivation and to enhance neurite outgrowth. In an effort to identify small molecules with greater potency, the structure of olanzapine was used as a template to search commercially available chemical inventories for compounds with similar features. These compounds were evaluated for their ability to protect cells against glutamine deprivation and low-serum conditions. Positive compounds, 'hits' from initial screening, were then tested for stimulation of neurite outgrowth, alone and in combination with suboptimum concentrations of nerve growth factor (NGF). Numerous neuroprotective compounds (mw < 550 Da) were identified that significantly stimulated neurite outgrowth in PC12 cells. These included 4', 6'-diamidino-2-phenylindole, a nuclear stain; staurosporine, an antibiotic and kinase inhibitor; and 2-phenylamino-adenosine, an adenosine analog. The small molecules were comparable with NGF, and in fact, replaced NGF in outgrowth assays. Pharmacophore analysis of the hits led to the design and synthesis of an active compound, LSU-D84, which represented an initial lead for drug discovery efforts.  相似文献   

10.
Treatment of PC12 cells with nerve growth factor induces their differentiation into sympathetic neuron-like cells and the concomitant expression of the neural cell adhesion molecule L1, a member of the Ig superfamily. To investigate the mechanism of L1-stimulated neurite outgrowth in PC12 cells, substrate-immobilized fusion proteins containing different extracellular domains of L1 were assayed for their neuritogenic activity. Surprisingly, domain Ig2 of L1, which was previously found to contain both homophilic binding and neuritogenic activities, failed to promote neurite outgrowth. In contrast, L1-Ig6 stimulated neurite outgrowth from PC12 cells. Despite this, homotypic binding of PC12 cells was significantly inhibited by antibodies against L1-Ig2, indicating that L1-L1 binding contributed to the intercellular adhesiveness of PC12 cells, but L1-stimulated neurite outgrowth depends on heterophilic interactions. Thus, PC12 cells provide a valuable model for the study of these two distinct functions of L1. Mutagenesis of L1-Ig6 highlighted the importance of the Arg-Gly-Asp motif in this domain for neuritogenesis. Inhibition studies using cyclic Arg-Gly-Asp-containing peptide and anti-integrin antibodies suggested the involvement of alphavbeta3 integrin. Furthermore, neurite outgrowth stimulated by L1-Ig6 was inhibited by lavendustin A and the MEK inhibitor PD98059, suggesting a signaling pathway that involves tyrosine kinase activation and the mitogen-activated protein kinase cascade.  相似文献   

11.
The fate of cyclic AMP (cAMP), dibutyryl-cAMP (Bt2-cAMP), and the (Sp)-isomer of adenosine 3',5'-monophosphorothioate [(Sp)-cAMPS] was studied in the PC12 culture medium by means of HPLC. In the absence of PC12 cells, cAMP and Bt2-cAMP were rapidly degraded by nonspecific esterases and cyclic nucleotide phosphodiesterase both originating from the serum commonly used as a culture medium ingredient, whereas (Sp)-cAMPS was completely stable. Since 5'-AMP, adenosine, inosine, and hypoxanthine appeared in the culture medium after incubation with cAMP or Bt2-cAMP, we have determined their effect on nerve growth factor (NGF)-induced neurite outgrowth. 5'-AMP, adenosine, and inosine were indeed potent agents in producing a potentiating effect on NGF-induced early neurite outgrowth at a concentration of 1 mM. Thus, cAMP metabolites had the capacity to induce an effect that has been described as cAMP-specific. In serum-free culture medium and in the presence of cells, all cyclic nucleotides were taken up by PC12 cells. Uptake was highly correlated with the hydrophobic nature of the compounds, and was accompanied by a simultaneous excretion of metabolites. On incubation with cAMP, NGF had a pronounced effect on the metabolic pattern found in the culture medium. In particular, dephosphorylation of 5'-AMP was specifically enhanced. This effect of NGF on the degradation of cAMP was also apparent when cAMP metabolites were incubated with PC12 cells. Whereas 5'-AMP degradation was greatly increased, NGF had no effect on the metabolism of the other purine compounds.  相似文献   

12.
To determine whether neurite outgrowth depends upon the mevalonate pathway, we blocked mevalonate synthesis in nerve growth factor-treated PC12 cells or primary cortical neurones with atorvastatin, a 3-hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and substituted different intermediates of the mevalonate pathway. We show that HMG-CoA reductase inhibition causes a profound reduction of neurite length, neurite loss and ultimatively cell death in undifferentiated and pre-differentiated PC12 cells and also in rat primary cortical neurones. Geranylgeranylpyrophosphate, but not farnesylpyrophosphate, squalene or cholesterol, completely compensated for the lack of mevalonate. Our data indicate that, under HMG-CoA reductase inhibition, geranylgeranylpyrophosphate rather than farnesylpyrophosphate or cholesterol is critical for neurite outgrowth and/or maintenance. Loss of neurites is an early manifestation of various neurodegenerative disorders, and dysfunction of isoprenylation might play a role in their pathogenesis.  相似文献   

13.
The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and EGF induce Rap1 activation in PC12-Shb cells, while FGF-2 fails to do so. However, PC12 cells expressing Shb with an inactivated SH2 domain do not respond to NGF stimulation with Rap1 activation. The CrkII SH2 domain interacts with Shb and a 130- to 135-kDa phosphotyrosine protein present mainly in PC12-Shb cells and these interactions may thus relate to the effect of Shb on Rap1 activation. Transient expression of RalGDS-RBD or Rap1GAP to block the Rap1 pathway reduces the NGF-dependent neurite outgrowth in PC12-Shb cells. These results suggest a role of Shb in NGF-dependent Rap1 signaling and this pathway may be of significance for neurite outgrowth under certain conditions.  相似文献   

14.
We investigated whether artepillin C, a major component of Brazilian propolis, acts as a neurotrophic-like factor in rat PC12m3 cells, in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of PC12m3 cells were treated with artepillin C at a concentration of 20 μM, the frequency of neurite outgrowth induced by artepillin C was approximately 7-fold greater than that induced by NGF alone. Artepillin C induced-neurite outgrowth of PC12m3 cells was inhibited by the ERK inhibitor U0126 and by the p38 MAPK inhibitor SB203580. Although artepillin C-induced p38 MAPK activity was detected in PC12m3 cells, phosphorylation of ERK induced by artepillin C was not observed. On the other hand, artepillin C caused rapid activation of ERK and the time course of the activation was similar to that induced by NGF treatment in PC12 parental cells. However, NGF-induced neurite outgrowth was inhibited by artepillin C treatment. Interestingly, inhibition of ERK by U0126 completely prevented artepillin C-induced p38 MAPK phosphorylation of PC12m3 cells. These findings suggest that artepillin C-induced activation of p38 MAPK through the ERK signaling pathway is responsible for the neurite outgrowth of PC12m3 cells.  相似文献   

15.
Transient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain development, suggesting that fine-tuning TRPC expression may be important for orchestrating neuritogenesis. To study how alterations in the TRPC expression pattern affect neurite outgrowth, we used nerve growth factor (NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, a model system for neuritogenesis. In PC12 cells, NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated TRPC5 expression while promoting neurite outgrowth. Overexpression of TRPC1 augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension. Endogenous TRPC1 attenuated the anti-neuritogenic effect of overexpressed TRPC5 in part by forming the heteromeric TRPC1-TRPC5 channels. Previous reports suggested that TRPC6 may facilitate neurite outgrowth. However, we found that TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12 cells. Consistent with these findings, hyperforin, a neurite outgrowth promoting factor, decreased TRPC6 expression in NGF-differentiated PC12 cells. Using pharmacological and molecular biological approaches, we determined that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR)-IKK(2)-dependent pathway that did not involve TrkA receptor signaling in PC12 cells. Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway in primary cultured hippocampal neurons. Thus, our data suggest that a balance of TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural cells, with TRPC6 emerging as an NGF-dependent "molecular damper" maintaining a submaximal velocity of neurite extension.  相似文献   

16.
Rat pheochromocytoma cells, PC12 cells, undergo differentiation in response to nerve growth factor (NGF). Although the Ras-MAP kinase signaling pathway has been shown to play a central role in the response to NGF, the precise mechanism which induces differentiation remains unclarified. Recently, several γ-lactam-related microbial products were identified to induce neurite outgrowth in neuroblastoma cells. Therefore, we synthesized a series of γ-lactam-related compounds and tested for their ability to induce neurite outgrowth in PC12 cells. We found that two compounds, MT-19 and MT-20, induced neurite outgrowth at concentrations as low as 1 μg/ml. MT-19 and MT-20 have ann-hexadecyl group and ann-dodecyl group, respectively, at the position N-1 of the γ-lactam ring, and the modification of this group leads to partial or complete loss of activity. In addition, the modification of the methyl and hydroxyl group at C-5 leads to complete loss of activity, indicating a strict structure–activity relationship. Interestingly, MT-19 and MT-20 induced neurite outgrowth of PC12 cells which lack normal Ras function. Furthermore, these compounds did not induce MAP kinase activation, suggesting that MT-19 and MT-20 do not require the Ras-MAP kinase signaling pathway which is shown to be necessary and sufficient for NGF-induced neurite outgrowth. Consistent with this, none of the early- or late-response genes tested, which includefos, zif268, Nur77, vgf,and transin, was induced. However, the protein level of three neurofilaments was increased after the incubation with these compounds. Since the level of other cytoskeleton proteins including actin and tubulin remained constant, MT-19 and MT-20 specifically affected neurofilament synthesis and/or turnover. Taken together, these findings indicate that MT-19 and MT-20 induce neurite outgrowth by activating the downstream target of MAP kinase or by a novel mechanism which is distinct from the NGF-activated pathway.  相似文献   

17.
We obtained a drug-hypersensitive PC12 mutant cell (PC12m3), in which neurite outgrowth was strongly stimulated by various drugs such as FK506, calcimycin and cAMP, under the condition of NGF treatment. The frequency of neurite outgrowth stimulated by FK506 was approximately 40 times greater than by NGF alone. The effects of FK506 on neurite outgrowth in PC12m3 cells were inhibited by rapamycin, an FK506 antagonist, and by calcimycin, a calcium ionophore. PC12m3 cells had a strong NGF-induced MAP kinase activity, the same as PC12 parental cells. However, FK506-induced MAP kinase activity was detected only in PC12m3 cells. The activation of MAP kinase by FK506 in PC12m3 cells was markedly inhibited by rapamicin and calcimycin. FK506-induced MAP kinase activity was also inhibited by MAP kinase inhibitor U0126. These results demonstrate that drug-hypersensitive PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

18.
Staurosporine, which has a structure similar to that of K-252a, a potent protein kinase inhibitor that blocks nerve growth factor (NGF) action in PC12 and PC12h cells, is also known as a potent inhibitor of several protein kinases. This study shows that in PC12h cells staurosporine has a dual action: at lower concentrations than that required by K-252a, it is an inhibitor of NGF induction of neurite formation and of changes in the phosphorylation of specific proteins, whereas at concentrations higher than that required to inhibit NGF-induced neurite outgrowth, it rapidly enhances outgrowth by itself.  相似文献   

19.
The synthesis and evaluation for anti- and proapoptotic properties of cyclopentenone prostaglandin analogs are described. Novel J-type analogs of NEPP11 with a cross-conjugated cyclopentadienone moiety and a lipophilic omega-side chain suppressed manganese ion-induced apoptosis of PC12 cells at comparable levels to NEPP11, while monoenone derivatives were inactive. The proapoptotic activities of J-type analogs were much lower than that of NEPP11. Natural 15-deoxy-Delta(12,14)-PGJ(2) and Delta(7)-PGA(1) methyl ester were highly toxic, inducing apoptosis at lower concentrations.  相似文献   

20.
Lin-11, Isl-1 and Mec-3 (LIM) kinases are serine/threonine kinases that phosphorylate cofilin, an actin depolymerizing protein. LIM kinases have a highly modular structure composed of two N-terminal LIM domains (LIM 1/2), a PSD-95, Dlg and ZO-1 (PDZ) domain and a C-terminal protein kinase domain. Here, we overexpressed individual domains of mouse LIM kinase 1 (LIMK1) in PC12 cells and investigated their effects on neurite outgrowth. Although none of the LIMK1 domains had an effect on spontaneous neurite outgrowth, the N-terminal LIM 1/2 domains strongly inhibited differentiation of PC12 cells after stimulation with both nerve growth factor (NGF) and the Rho-kinase inhibitor Y-27632. In contrast, the overexpressed PDZ domain reduced neurite outgrowth only when differentiation had been induced by Y-27632, but not by NGF. Our data suggest that the different non-catalytic N-terminal domains of LIMK1 contribute to the regulation of neurite extension by using distinct signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号