首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phospholipids from murine mastocytoma FMA3 and P-815 clone cells were quantitatively analyzed, and the major glycerophospholipids were examined for their fatty acyl chain distribution. In these cells, the content of histamine was less than 1/100 of normal mouse mast cells, and FMA3 cells had 1.5-fold as much histamine content as P-815 cells. The predominant phospholipid species of both mastocytoma FMA3 and P-815 were choline-containing glycerophospholipids (48%) and ethanolamine-containing glycerophospholipids (29%). The remaining minor constituents were sphingomyelin (6%, 7%), phosphatidylinositol (7%, 5%), phosphatidylserine (2%, 5%), cardiolipin (4%, 3%), and phosphatidic acid (2%, 1% for FMA3 and P-815, respectively). The choline-containing glycerophospholipids consisted of high amounts of 1-O-alkyl-2-acyl type (31%, 25%) and 1,2-diacyl type (63%, 66%) and a smaller amount of 1-O-alk-1'-enyl-2-acyl type (7%, 8%). In contrast, ethanolamine-containing glycerophospholipids were characterized by high contents of 1-O-alk-1'-enyl-2-acyl type (36%, 31%) and 1,2-diacyl type (55%, 58%), and a lower level of 1-O-alkyl-2-acyl type (12% and 11% for FMA3 and P-815, respectively). Unlike choline-containing glycerophospholipids and sphingomyelin that were rich in palmitic acid, ethanolamine-containing glycerophospholipids, phosphatidylserine and phosphatidylinositol showed a high proportion of stearic acid in the overall fatty acid composition. The content of arachidonic acid was highest in phosphatidylinositol. Sphingomyelin had a large amount of long chain and polyunsaturated fatty acids. In both choline- and ethanolamine-containing glycerophospholipids, the predominant fatty acids in the sn-1-position were palmitic, stearic, and oleic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
When rats were fed a corn oil versus a corn oil-fish oil diet the overall phospholipid content and composition as well as the subclass distribution of the choline- and ethanolamine-containing glycerophospholipids from neutrophils were not altered. The serine-containing glycerophospholipids were characterized by high levels of stearic and oleic acids. When fish oil was added to the diet it replaced some of the arachidonate in both the inositol- and the serine-containing glycerophospholipids. In the corn oil-fed animals, 25.2 and 33.6 mole %, respectively, of the molecular species of 1,2-diacyl- and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine contained arachidonate. The values for 1,2-diacyl and 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine were, respectively, 41 and 55.8 mole %. When half of the 5% corn oil in the diet was replaced by fish oil, there was a 53, 38, 27, and 25% reduction, respectively, in the level of arachidonate in these four lipid subclasses. The amount of 5,8,11,14,17-eicosapentaenoic acid incorporated into these four subclasses was always less than the decline in arachidonic acid. This was due, in part, to the acylation of small amounts of 22-carbon (n-3) acids into these lipids. Molecular species analysis demonstrated that 5,8,11,14,17-eicosapentaenoic acid paired with the same components at the sn-1 position, and in the same ratio, as did arachidonic acid. The amounts of 16- and 18-carbon saturated and unsaturated fatty acid at the sn-2 position were not altered by dietary change. Collectively, these findings suggest that 5,8,11,14,17-eicosapentaenoic and arachidonic acids are metabolized in a similar way by neutrophils. These studies also support the concept that neutrophils contain two metabolic pools of phospholipids. One pool is altered by dietary fat change while the pool containing 16- and 18-carbon acids is resistant to change when fish oil is included in the diet.  相似文献   

3.
Cells of the human promyelocytic leukemia cell line HL-60 as well as HL-60 granulocytes induced in vitro by retinoic acid were examined for lipid composition. One of our original aims was to clarify how human granulocyte (differentiated HL-60 cells) synthesized enough precursors of lipid mediators, such as prostaglandins and/or platelet activating factor. Comparison studies yielded the following results. 1) After granulocyte differentiation, total phospholipid of HL-60 cells decreased to about 70% of that of untreated cells, while the content of triglyceride increased to about 200% of the original level. 2) The subclass composition of ethanolamine-containing glycerophospholipid was greatly altered during differentiation; 1-alkenyl-2-acyl glycerophosphoethanolamine (GPE) increased to 166% of that in the untreated cells, while 1,2-diacyl GPE decreased to 46% of the original value. The resultant profile became very similar to that of human peripheral polymorphonuclear leukocytes. 3) During differentiation, the amount of arachidonic acid stored in both phospholipid and triglyceride of retinoic acid-treated HL-60 cells significantly increased. Its distribution was also modified; arachidonic acid in 1,2-diacyl GPE decreased to 63%, while those of 1-alkenyl-2-acyl GPE, choline-containing glycerophospholipids, and phosphatidylinositol increased to 169, 154, and 153%, respectively. These results suggested that the regulatory mechanism of lipid turnover in HL-60 cells was modified during retinoic acid-induced granulocyte differentiation. The alterations were not enough to explain fully the capability of differentiated HL-60 cells to produce lipid mediators upon stimulation, but they were probably one of the factors that regulate these reactions.  相似文献   

4.
In this work, the uptake and release of [3H]arachidonic acid by the diacyl and ether species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in human platelets were studied. Uptake of [3H]arachidonic acid into 1,2-diacyl-PC and 1,2-diacyl-PE was much greater than into the ether phospholipids of the same class. In [3H]arachidonoyl-labeled platelets stimulated by thrombin, there was a decrease in total [3H] arachidonoyl-PC. This was accounted for mostly by a decrease in 1-acyl-2-[3H]arachidonoyl-PC while the level of 1-O-alkyl-2-[3H]arachidonoyl-PC (a precursor for platelet-activating factor) increased slightly. However, in ionophore A23187-stimulated platelets, the reduction of total [3H]arachidonoyl-PC was due to a decrease in both 1-acyl-2-[3H]arachidonoyl-PC and 1-O-alkyl-2-[3H] arachidonoyl-PC, suggesting that ionophore should yield more platelet-activating factor than thrombin. In both thrombin- and ionophore-stimulated platelets, there was a net increase in total [3H]arachidonoyl-PE. This consisted of a decrease in 1,2-diacyl-PE, which was essentially complete by 1 min, followed by an increase in 1-O-alk-1'-enyl-2-[3H]arachidonoyl-PE, which was slower and not apparent until 3-5 min after thrombin. During reincubation of labeled platelets with saline, the 1-O-alkyl-2-[3H]arachidonoyl-PC increased by a factor of 2, between 0 and 4 h, with no significant change in the radioactivity of any other phospholipid. Thus, upon stimulation of human platelets, arachidonic is released from both 1,2-diacyl-PC and 1,2-diacyl-PE for metabolism by platelet cyclooxygenase and lipoxygenase, while certain ether pools of PC and PE also collect arachidonic acid.  相似文献   

5.
Synthesis and degradation of glycerophospholipids in HL-60 cells and retinoic acid (RA)-treated HL-60 cells were examined. The synthesis of each subclass of ethanolamine-containing glycerophospholipids was extremely suppressed in RA-treated HL-60 cells, while that of other glycerophospholipids was not seriously affected. A pulse-chase experiment revealed that about 88% of 1,2-diacyl and 28% of 1-alkenyl-2-acyl glycerophosphoethanolamine were degraded during 4 days in RA-treated HL-60 cells. These characteristics of metabolism observed in RA-treated HL-60 cells might be responsible for the change of subclass composition of ethanolamine-containing glycerophospholipids in HL-60 cells during differentiation to granulocytes.  相似文献   

6.
Phosphatidic acid generation through activation of diacylglycerol kinase alpha has been implicated in interleukin-2-dependent T-lymphocyte proliferation. To investigate this lipid signaling in more detail, we characterized the molecular structures of the diradylglycerols and phosphatidic acids in the murine CTLL-2 T-cell line under both basal and stimulated conditions. In resting cells, 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol subtypes represented 44 and 55% of total diradylglycerol, respectively, and both showed a highly saturated profile containing primarily 16:0 and 18:1 fatty acids. 1-O-Alk-1'-enyl-2-acylglycerol represented 1-2% of total diradylglycerol. Interleukin-2 stimulation did not alter the molecular species profiles, however, it did selectively reduce total 1-O-alkyl-2-acylglycerol by over 50% at 15 min while only causing a 10% drop in 1,2-diacylglycerol. When radiolabeled CTLL-2 cells were challenged with interleukin-2, no change in the cellular content of phosphatidylcholine nor phosphatidylethanolamine was observed thereby ruling out phospholipase C activity as the source of diradylglycerol. In addition, interleukin-2 failed to stimulate de novo synthesis of diradylglycerol. Structural analysis revealed approximately equal amounts of 1,2-diacyl phosphatidic acid and 1-O-alkyl-2-acyl phosphatidic acid under resting conditions, both containing only saturated and monounsaturated fatty acids. After acute (2 and 15 min) interleukin-2 stimulation the total phosphatidic acid mass increased, almost entirely through the formation of 1-O-alkyl-2-acyl species. In vitro assays revealed that both 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol were substrates for 1,2-diacylglycerol kinase alpha, the major isoform in CTLL-2 cells, and that the lipid kinase activity was almost totally inhibited by R59949. In conclusion, this investigation shows that, in CTLL-2 cells, 1,2-diacylglycerol kinase alpha specifically phosphorylates a pre-existing pool of 1-O-alkyl-2-acylglycerol to form the intracellular messenger 1-O-alkyl-2-acyl phosphatidic acid.  相似文献   

7.
Rat platelets and their megakaryocyte precursors were examined for phospholipid composition. (1) The phospholipid composition of rat megakaryocytes, which were enriched and prepared from bone marrow cells, was almost identical to that of platelets. (2) The subclass composition of choline-containing glycerophospholipids (CGP) of rat megakaryocytes differed significantly from that of platelets: 1-alkenyl-2-acyl glycerophosphocholine (GPC) in megakaryocytes accounted for 29% of the total, whereas that in platelets was only 7%. (3) Rat platelets contained a larger amount of arachidonic acid than megakaryocytes, especially in ethanolamine-containing glycerophospholipids (EGP). (4) [32P]Phosphoric acid was significantly incorporated into megakaryocytes, whereas platelets showed little incorporation. On the other hand, the uptake of [3H]arachidonic acid into platelet phospholipids was about 15-times higher than that observed with megakaryocytes. (5) As reported previously for other blood cells, such as neutrophils and macrophages, the radioactivity of labeled arachidonic acid incorporated into CGP of platelets decreased, whereas that incorporated into EGP increased during a subsequent chase period. Hardly any such change was observed with megakaryocytes. These results suggest that the phospholipid composition of rat platelets is mainly determined at the time of thrombopoiesis, whereas the composition of molecular species is remodeled during circulation after thrombopoiesis.  相似文献   

8.
Ethanolamine phosphotransferase (EPT) is a key enzyme responsible for the synthesis of ethanolamine glycerophospholipids. Plasmenylethanolamine is a predominant molecular subclass of ethanolamine glycerophospholipids in the heart. The present study was designed to identify the selective use of 1-O-alk-1'-enyl-2-acyl-sn-glycerol as a substrate for EPT as a mechanism responsible for the predominance of plasmenylethanolamine in the rabbit heart. EPT activity in rabbit myocardial membranes using 1,2-diacyl-sn-glycerol as substrate is activated by Mn2+, inhibited by dithiobisnitrobenzoic acid (DTNB) and is unaffected by Ca2+. In contrast, ethanolamine phosphotransferase activity using 1-O-alk-1'-enyl-2-acyl-sn-glycerol as substrate is inhibited by Mn2+ and Ca2+, but is activated by DTNB. Additionally, ethanolamine phosphotransferase activity using 1-O-alk-1'-enyl-2-acyl-sn-glycerol substrate was more sensitive to thermal denaturation compared with that of 1,2-diacyl-sn-glycerol. Taken together, these results suggest that separate ethanolamine phosphotransferase activities are present in heart membranes that are responsible for the synthesis of phosphatidylethanolamine and plasmenylethanolamine.  相似文献   

9.
Plasmenylethanolamines represent the major endogenous phospholipid storage depot of arachidonic acid in many mammalian cells. To elucidate the biochemical mechanisms contributing to the high plasmalogen content and arachidonic acid enrichment present in myocardial ethanolamine glycerophospholipids, the substrate specificity of rabbit myocardial ethanolamine phosphotransferase (EPT) was quantified utilizing multiple molecular species of each subclass of diradyl glycerol substrate. Myocardial EPT demonstrated over a 16-fold selectivity for 1-O-alk-1'-enyl-2-acyl-sn-glycerol (AAG) compared to 1,2-diacyl-sn-glycerol (DAG) substrate utilizing individual molecular species of each subclass dispersed in Tween 20. The selective utilization of AAG by EPT was substantiated utilizing two independent assay systems which employed either the presentation of substrate to enzyme as a substitutional impurity in Triton X-100 mixed micelles or the obligatory utilization of endogenously generated diradyl glycerol substrates. Although rabbit myocardial microsomes contained over a 20-fold molar excess of endogenous DAG to AAG mass, incubation of rabbit myocardial microsomes with CDP-ethanolamine resulted in the highly selective synthesis of plasmenylethanolamines which were predominantly comprised of molecular species containing arachidonic acid at the sn-2 position (greater than 75%). Endogenous AAG molecular species in rabbit myocardial microsomes were similarly enriched in arachidonic acid, and the distribution of AAG molecular species closely paralleled the distribution of plasmenylethanolamine (but not plasmenylcholine) molecular species. Thus, the subclass and molecular species distribution of the ethanolamine glycerophospholipids synthesized by rabbit myocardial EPT reflects independent contributions from the subclass selectivity of EPT for AAG substrate in conjunction with the enrichment of arachidonic acid in microsomal AAG molecular species.  相似文献   

10.
Addition of 1-O-alk-1'-enyl-2-lyso-sn-glycero-3-phosphoethanolamine (alkenyl-lyso-GPE) to human neutrophil membrane preparations containing 1-O-[3H]hexadecyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (1-O-[3H]alkyl-2-arachidonoyl-GPC) resulted in rapid deacylation of the 1-O-[3H]alkyl-2-arachidonoyl-GPC to 1-O-[3H]alkyl-2-lyso-GPC (lyso-platelet-activating factor, lyso-PAF). When acetyl-CoA was included in the incubation mixture, the [3H]lyso-PAF was converted to [3H]PAF. Studies of [3H]arachidonate-labeled neutrophils permeabilized with Staphlococcus aureus alpha-toxin revealed a major shift of labeled [3H]arachidonate from the choline to the ethanolamine-containing phosphoglycerides upon addition of alkenyl-lyso-GPE. The studies indicated that lyso-PAF is formed in the system by the transfer of arachidonate from 1-O-alkyl-2-arachidonoyl-GPC to the alkenyl-lyso-GPE by a CoA-independent transacylase reaction. Mass measurements revealed a rapid loss of arachidonate from 1-radyl-2-acyl-GPE and a concomitant increase in alkenyl-lyso-GPE upon stimulation of the neutrophils by ionophore A23187. Based on these and other findings, a pathway is proposed that may play a significant, if not obligatory, role in the synthesis of PAF in intact stimulated neutrophils. It has been widely accepted that phospholipase A2 acts directly on 1-O-alkyl-2-arachidonoyl-GPC as the first step in the synthesis of PAF via formation of lyso-PAF. In the proposed scheme, phospholipase A2, upon stimulation, acts rapidly on ethanolamine plasmalogen selectively releasing arachidonic acid and generating alkenyl-lyso-GPE. The CoA-independent transacylase then selectively transfers arachidonate from 1-radyl-2-arachidonoyl-GPC to the alkenyl-lyso-GPE generating lyso-PAF, which is then acetylated to form PAF. The interactions outlined can account for the synthesis of 1-acyl-2-acetyl-GPC, 1-O-alk-1'-enyl-2-acetyl-GPE, and eicosanoids, in parallel with PAF.  相似文献   

11.
Human neutrophils were fractionated on Percoll gradients and the various subcellular fractions were analyzed for phospholipid and fatty acid composition. The results showed that plasma membranes and azurophilic granules were enriched with ethanolamine-(PE) relative to choline-(PC) containing phosphoglycerides. A remarkable degree of uniformity existed throughout the gradient with respect to the subclass composition of the subcellular PC and PE components. In each fraction 50-60% of the PC was diacyl, 40-45% was 1-O-alkyl-2-acyl (ether linked), and 2-5% was 1-O-alk-1'-enyl-2-acyl (plasmalogenic). For PE, 20-25% was diacyl, 7-12% ether linked, and 64-76% plasmalogenic. When neutrophils were incubated for 15 min with [1-14C]arachidonic acid and subfractionated most of the PC-associated label was intracellularly localized. A similar result was observed in PE, however, when the cells were allowed to stand for 2 h in fatty acid-free buffer following the 15 min of labeling and then subfractionated there was a sizable migration of [14C]arachidonate into plasma membrane PE. In all cases the diacyl subclass was labeled most heavily after 15 min but after an additional 2 h of incubation in fatty acid-free buffer there was a direct transfer of label to the ether- and plasmalogenic-linked PC and PE subclasses. It was also found that arachidonoyl-coenzyme A 1-acyl-lysophosphatide acyltransferase activity was inherent in all three major membrane types but was enriched in the endoplasmic reticulum/secondary granule fraction. Arachidonate consistently accounted for roughly 5% of the PC and 17% of the PE fatty chain composition in each subcellular fraction. These findings demonstrate that, despite the uniform arachidonate and PC and PE subclass composition within the various neutrophil subcellular fractions, the bulk of the PC- and PE-associated arachidonate is localized in intracellular membranes.  相似文献   

12.
Using cultured human umbilical vein endothelial cells, in which phosphatidylcholine (PC) is equally pulse-labelled by various eicosanoid precursor fatty acids (EPFAs), we have studied the remodelling of EPFAs among the phospholipid classes and subclasses with and without activation, and the relationship of this remodelling process to the selective release of arachidonic acid (AA) by phospholipase A2-mediated cell stimulation. When endothelial cells are pulse-incubated with radiolabelled EPFA for 15 min, greater than 80% of cell-associated radioactivity is present in phospholipids, among which greater than 60% is found in 1,2-diacyl-sn-glycero-3-phosphocholine (diacyl PC). After removing unincorporated radioactivity, reincubation of the pulse-labelled cells for up to 6 h results in progressive decrease in EPFA-labelled diacyl PC, increase in AA- or eicosapentaenoic acid (EPA)-labelled 1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (plasmalogen PE) and increase only in AA-labelled 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl PC). This redistribution of radiolabelled phospholipids is not altered by the presence of excess non-radiolabelled EPFAs. When aspirin-treated EPFA-labelled endothelial cells are stimulated with ionophore A23187, a very selective release of AA is noted in comparison with eicosatrienoate (ETA) or EPA, accompanied by an equivalent decrease in AA-labelled diacyl PC and specific increase in AA-labelled plasmalogen PE and alkyl PC. These selective changes in AA radioactivity induced by A23187 are enhanced 2-fold by pretreating the AA-labelled cells with phorbol 12-myristate 13-acetate, which by itself induces no changes. The changes in radioactivity induced by A23187 without and with phorbol ester among the released AA, the diacyl PC and the plasmalogen PE are significantly correlated with each other. These results indicate that human endothelial cells incorporate EPFAs (AA, ETA, EPA) equally into diacyl PC but selectively release AA esterified into diacyl PC with specific remodelling into plasmalogen PE and alkyl PC.  相似文献   

13.
Plasmalogens (1-O-alk-1'-enyl-2-acyl glycerophospholipids) constitute a special class of phospholipids characterized by the presence of a vinyl-ether bond at the sn-1 position. Although long considered as biological peculiarities, interest in this group of phospholipids has grown in recent years, thanks to the realization that plasmalogens are involved in different human diseases. In this review, we summarize the current state of knowledge with respect to the enzymatic synthesis of plasmalogens, the characteristic topology of the enzymes involved and the biological roles that have been assigned to plasmalogens.  相似文献   

14.
Human neutrophils stimulated by ionophore A23187 incorporate [3H]acetate into platelet-activating factor and an additional product which is chromatographically similar to phosphatidylethanolamine and accounts for approximately 25% of the [3H]acetate-containing lipids. Three general approaches indicated the sn-1 moiety of the unknown phospholipid is primarily alk-1'-enyl-linked: 1) approximately 80% of the intact phospholipid as well as its derivatives was highly sensitive to hydrolysis by HCl, 2) 80% of the product which resulted from treating the unknown with phospholipase C and acetylating the free hydroxyl group at the sn-3 position, chromatographed with authentic 1-O-alk-1'-enyl-2,3-diacetylglycerol, and 3) catalytic hydrogenation of the diacetylglycerol product described in 2) resulted in a product which chromatographed with alkyldiacetylglycerol and was not sensitive to strong acid. Treatment of the intact phospholipid with phospholipase A2 resulted in the release of 88% of the radiolabel into the acidified aqueous phase of the extraction mixture, indicating the moiety in the sn-2 position remained as acetate and had not been elongated to fatty acid. The head group was determined to be phosphoethanolamine based upon its complete conversion to the dinitro- and trinitrophenyl derivatives by the amine-derivatizing reagents fluorodinitrobenzene and trinitrobenzenesulfonic acid, respectively. From these data is was concluded that the unknown product is 1-O-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine (80%), and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine (10%). Sonicates prepared from neutrophils stimulated with ionophore A23187 contained an acetyltransferase activity capable of utilizing 1-O-alk-1'-enyl-2-lyso-sn-glycero-3-phosphoethanolamine and [14C]acetyl-CoA to produce the product identified as 1-O-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine.  相似文献   

15.
The t-butyldimethylsilyl derivatives of 1,2-diakyl, 1-alk-1'-enyl-2-acyl, 1-alkyl-2-acyl and 1,2-diacyl glycerols were analysed with a gas chromatograph mass spectrometer system. The characteristic fragment ions were as follows. The molecular weight determining ion was [M-57]+, which was formed by cleavage of the t-butyl radical from the molecular ion. The nature of the alk-1'-enyl residue could be determined by the presence of ions at [RCH-CH 56]+ and [RCH = CH + 130]+ (RCH = CH = alk-1'-enyl), and the alkyl residue by the ion at [R + 130]+(R = alkyl group). Ions giving information about the acyl group, [RCO]+, [RCO + 74]+ and [M-RCH = CHO, -RO or -RCOO]+ were also observed. The mass spectra of pairs of trimethylsilyl and t-butyldimethylsilyl derivatives showed differences in several respects. The t-butyldimethylsilyl derivatives gave more effective information for elucidating the structure of phosphoglycerides.  相似文献   

16.
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils.  相似文献   

17.
The involvement of the ethanolamine-linked phosphoglyceride fraction (PE) in neutrophil signal transduction is suggested by the stimulus-induced release of arachidonic acid from PE (Chilton, F. H., and Connell, T. R. (1988) J. Biol. Chem. 263, 5260-5265) and by the synthesis of acetylated PE species, predominantly 1-O-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine (alkenylacetyl-GPE; Tessner, T. G., and Wykle, R. L. (1987) J. Biol. Chem. 262, 12660-12664) in stimulated cells. In the studies reported here, we investigated the relationship between arachidonic acid release from PE and generation of the lysophospholipid precursor required in the biosynthesis of alkenylacetyl-GPE. In order to follow these reactions, we prelabeled neutrophils with 1-O-[3H]alk-1'-enyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine (alkenyl-acyl-GPE). We also followed the hydrolysis of endogenous PE by analysis as the dinitrophenyl derivative using a high pressure liquid chromatography method we developed. Our results coupled with those of Chilton et al. (Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L. (1984) J. Biol. Chem. 259, 12014-12019) indicate that in human neutrophils the metabolism of alkenylacyl-GPE and alkylacyl-sn-glycero-3-phosphocholine (GPC) are strikingly similar with regard to arachidonate metabolism. When added to neutrophils, both 1-O-[3H]alkenyl-2-lyso-GPE and 1-O-[3H]alkyl-2-lyso-GPC are acylated predominantly with arachidonic acid, and the resulting arachidonoyl-containing phospholipids are extensively deacylated upon stimulation. However, hydrolysis of PE in the neutrophil differs from hydrolysis of choline-containing phosphoglycerides in that stimulation leads to a greater accumulation of the ethanolamine-linked lysophospholipid. A comparison of the molecular species of endogenous PE (based on molar concentrations measured as the dinitrophenyl derivative) from resting and stimulated neutrophils indicated that only those species which contain arachidonate are significantly hydrolyzed.  相似文献   

18.
Recently we have identified a novel choline and ethanolamine specific phospholipase C in myocardium and have hypothesized that this enzyme is responsible for the introduction of the vinyl ether linkage into plasmenylcholine by shuttling 1-O-alk-1'-enyl-2-acyl-sn-glycerol fragments from plasmenylethanolamine to plasmenylcholine (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303). The present study demonstrates that rabbit myocardium contains endogenous 1-O-hexadec-1'-enyl-2-acyl-sn-glycerol (0.46 micrograms/g) and that these moieties are selectively utilized by myocardial choline phosphotransferase to generate plasmenylcholine. The apparent Michaelis constant of CDP-choline for microsomal choline phosphotransferase was 9 microM with a corresponding Vmax of 18 pmol/mg.min utilizing endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol as substrate. The flux of CDP-choline into plasmenylcholine or phosphatidylcholine was similar despite the fact that the mass of endogenous 1,2-diacyl-sn-glycerol was over 20 times the mass of endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol. Augmentation of endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol content by pretreatment of myocardial microsomes with exogenous phospholipase C resulted in an 8-fold increase in plasmenylcholine synthesis. The results suggest that myocardial plasmenylcholine biosynthesis occurs by polar head group remodeling utilizing endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol as a synthetic intermediate. Flux through this pathway is likely regulated by physiologic increments in endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol content and cytosolic CDP-choline concentration.  相似文献   

19.
Ethanolamine plasmalogens (1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamines) of many tissues contain high levels of arachidonate at their 2-position, and in certain tissues have been implicated as possible donors of arachidonate required in the synthesis of prostaglandins and thromboxanes. In the present study, [3H]arachidonate-labeled phospholipids of HSDM1C1 cells, a cell line derived from a mouse fibrosarcoma, were examined to determine the donor of the arachidonic acid released upon bradykinin stimulation of the synthesis of PGE2. HSDM1C1 cells labeled with [3H]arachidonic acid for 24 hr in serum-free medium were used in most of the experiments and had the following distribution of label among the cellular lipids; phosphatidylcholine (33%), phosphatidylinositol (20%), diacyl-sn-glycero-3-phosphoethanolamine (15%), ethanolamine plasmalogen (15%), and less polar lipids )16%). Bradykinin treatment stimulated a rapid hydrolysis of [3H]arachidonate from the cellular lipids and conversion of the released acid to PGE2, which was secreted into the medium. The label was released predominantly from phosphatidylinositol and possibly from phosphatidylcholine with no detectable change in the labeling of diacyl- or 1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. The ethanolamine plasmalogens, therefore, do not appear to be involved in the stimulated release of arachidonate in the HSDM1C1 cells. Indomethacin blocked the bradykinin-stimulated synthesis of PGE2 and to a lesser degree inhibited the release of [3H]arachidonate from the cellular lipids into the medium.  相似文献   

20.
The molecular species of ether-linked lipids in the phosphatidylcholine (PC) fraction of the pulmonary surfactant obtained from the lavage fluid of dog were characterized. A combination of base-catalyzed methanolysis, phospholipase C treatment, gas-liquid chromatography, and mass spectrometry procedures were applied. The phospholipid composition of the surfactant, obtained by phosphorus assay of lipids separated by silica gel G thin-layer chromatography (TLC), was: PC (75%), phosphatidylglycerol (10%), phosphatidylethanolamine (7%), plus small amounts of sphingomyelin, phosphatidylinositol, and phosphatidylserine. The major components of the PC were 1,2-diacylPC (95%), and 1-O-alkyl-2-acylPC (5%). No detectable amounts of 1-O-alkyl-1'-enyl-2-acylPC or di-alkyl-1-enylPC were observed. The acyl groups present in the diacylPC were 14:0 (5%), 16:0 (68%), 16:1 (12%), 18:0 (6%), 18:1 (7%) and 18:2 (2%). The predominant alkyl ether chains located at the carbon 1 position of the 1-O-alkyl-2-acylPC were 16:0 (84%), 18:0 (5%) and 18:1 (14%). At the carbon 2 position only a 16:0 fatty acyl residue was detected. In three out of seven animals platelet-activating factor-like activity, as determined by a platelet aggregation assay, was isolated by TLC. This aggregating activity was lost upon base-catalyzed methanolysis, but was restored by functional levels after acetylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号