首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad,Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.  相似文献   

2.
The distribution of vasoactive intestinal polypeptide (VIP) immunoreactive nerves and endocrine cells in the gastrointestinal tract and pancreas of a number of mammalian and submammalian species has been examined in order to throw light on the exact localization of this peptide. Seven out of 8 VIP antisera demonstrated numerous nerve fibers in the gut, whereas one antiserum (TR2) revealed only scattered, few nerve fibers. The distribution of endocrine cells demonstrated by the different VIP antisera varied considerably. Thus, some antisera demonstrated only endocrine cells in the feline antrum, others only colonic endocrine cells and still others only endocrine cells of the upper gut and pancreas. The variability in staining pattern of endocrine cells as well as recent radioimmunological data makes it opportune to suggest that true VIP is a neuronal peptide and that endocrine cells store peptides resembling, but not being identical with, VIP (VIPoids).  相似文献   

3.
Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad, Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the stomach and in the small intestine. Neurotensin cells were seen only in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.  相似文献   

4.
Summary Four immunoreactive endocrine cell types can be distinguished in the pancreatic islets of B. conchonius: insulin-producing B cells, somatostatin-producing A1 (= D) cells, glucagon-producing A2 cells and pancreatic poly-peptide-producing PP cells. The principal islet of this species contains only a few PP cells, while many PP cells are present in the smaller islets. Except for the B cell all pancreatic endocrine cell types are also present in the pancreatic duct.At least six enteroendocrine cell types are present in the gut of B. conchonius: 1. a cell type (I) with small secretory granules, present throughout the intestine, and possibly involved in the regulation of gut motility; 2. a C-terminal gastrin immunoreactive cell, probably producing a caerulein-like peptide; these cells are located at the upper parts of the folds, especially in the proximal part of the intestinal bulb; 3. a met-enkephalin-immunoreactive cell, present throughout the first segment; 4. a glucagon-immunoreactive cell, which is rare in the first segment; 5. a PP-immunoreactive cell, mainly present in the first half of the first segment; 6. an immunoreactive cell, which cannot at present be specified, located in the intestinal bulb. The latter four cell types are mostly located in the basal parts of the folds, although some PP-immunoreactive cells can also be found in the upper parts.Most if not all enteroendocrine cells are of the open type. The possible functions of all enteroendocrine cell types are discussed.Abbreviations BPP bovine pancreatic polypeptide - CCK cholecystokinin - GEP gastro-entero-pancreatic - GIP gastric inhibitory peptide or glucose-dependent insulin releasing peptide - PPP pig pancreatic polypeptide - VIP vasoactive intestinal polypeptide  相似文献   

5.
1. The localization of vasoactive intestinal polypeptide (VIP) in the gastrointestinal tracts of a holostean fish, the bowfin (Amia calva) and a teleostean fish, the bluegill (Lepomis macrochirus) was determined using immunocytochemistry.2. In the bowfin, VIP immunoreactivity was observed in both gut nerves and gastrointestinal endocrine cells. In the bluegill, only gut nerves exhibited VIP-like immunoreactivity.3. The presence of VIP endocrine cells in the gastric mucosa of bowfin appears to be unique among vertebrates. VIP-containing endocrine cells of the open type were seen in cardiac, oxyntic, and antral gastric mucosa. There appeared to be morphological differences in VIP endocrine cell shapes in anterior versus posterior stomach regions. No VIP endocrine cells were observed in bowfin intestine.4. We conclude that VIP may have an endocrine/paracrine regulatory role in the bowfin stomach and may be strictly a neurotransmitter/neuromodulator in the bowfin gut. There are many species differences in the distribution of VIP-like peptides between neurons and endocrine cells in the guts of lower vertebrates, complicating analysis of the neural versus endocrine evolutionary origin of gut VIP.  相似文献   

6.
Changes in distribution density,morphology and secretory content of endocrine cells in the gastro-entero-pancreatic system of black-spotted frogs Rana nigromaculata before and after fasting were investigated using immunohistochemistry and antisera to six gut hormones.Six types of endocrine cells were detected in the digestive tract of Rana nigromaculata,including 5-hydroxytryptamine(5-HT),gastrin(GAS),somatostatin(SOM),glucagon(GLU),pancreatic polypeptide(PP)and vasoactive intestinal polypeptide(VIP)cells.A...  相似文献   

7.
Peptides identical or related to mammalian gut hormones occur widely, not just in gut endocrine cells but also in central or peripheral nerves, amphibian skin glands, and a variety of invertebrate tissues. The dual distribution in brain and gut was probably already established early in the vertebrate line; representatives of the oldest vertebrate group, the cyclostomes, have cholecystokinin-like factors in gut endocrine cells and in brain. The related sequences of certain gut peptides, notably gastrin and cholecystokinin (CCK), and secretin, glucagon, vasoactive intestinal polypeptide (VIP), and gastric inhibitory peptide (GIP), indicate evolution from common ancestral molecules by gene duplication and divergence. Functionally important residues are conserved. Thus the COOH-terminal pentapeptide common to gastrin and CCK also contains their minimal active fragment. There are also evolutionary changes at the level of the target organ receptor mechanisms: these are also evolutionary changes at the level of the target organ receptor mechanisms; these are illustrated by evidence suggesting that secretin regulates the flow of pancreatic juice in mammals whereas the structurally related peptide VIP has a similar role in birds.  相似文献   

8.
The distribution of calbindin in some endocrine glands (thyroid, parathyroid, ultimobranchial body, pituitary and adrenals) and in the diffuse endocrine cells of the gut and pancreas has been investigated immunohistochemically using an antiserum raised against the 28 kDa calbindin from chicken duodenum. The identity of calbindin-immunoreactive cells in a number of avian and mammalian species was ascertained by comparison with hormone-reactive cells in consecutive sections or by double immunostaining of the same section with both calbindin and hormone antibodies. Calcitonin-producing C cells of the mammalian and avian thyroid, parathyroid or ultimobranchial body, PP, glucagon and insulin cells of the mammalian and avian pancreas, enteroglucagon cells of the avian intestine, secretin cells of the mammalian duodenum, histamine-producing ECL cells of the mammalian stomach, as well as noradrenaline-producing cells of the adrenal medulla and some (TSH?) cells of the adenohypophysis were among the calbindin-immunoreactive cells. Although some species variability has been observed in the intensity and distribution of the immunoreactivity, especially in the pancreas and the gut, a role for calbindin in the mechanisms of calcium-mediated endocrine cell stimulation or of intracellular and extracellular calcium homeostasis is suggested.  相似文献   

9.
Summary The distribution of calbindin in some endocrine glands (thyroid, parathyroid, ultimobranchial body, pituitary and adrenals) and in the diffuse endocrine cells of the gut and pancreas has been investigated immunohistochemically using an antiserum raised against the 28 kDa calbindin from chicken duodenum. The identity of calbindin-immunoreactive cells in a number of avian and mammalian species was ascertained by comparison with hormone-reactive cells in consecutive sections or by double immunostaining of the same section with both calbindin and hormone antibodies. Calcitonin-producing C cells of the mammalian and avian thyroid, parathyroid or ultimobranchial body, PP, glucagon and insulin cells of the mammalian and avian pancreas, enteroglucagon cells of the avian intestine, secretin cells of the mammalian duodenum, histamine-producing ECL cells of the mammalian stomach, as well as noradrenaline-producing cells of the adrenal medulla and some (TSH?) cells of the adenohypophysis were among the calbindin-immunoreactive cells. Although some species variability has been observed in the intensity and distribution of the immunoreactivity, especially in the pancreas and the gut, a role for calbindin in the mechanisms of calcium-mediated endocrine cell stimulation or of intracellular and extracellular calcium homeostasis is suggested.  相似文献   

10.
Summary Enteroendocrine cells containing glucagon-, substance P-, neurotensin- and VIP-like substances have been demonstrated immunocytochemically in the gut of Barbus conchonius. Mainly based on the distribution of the immunoreactive endocrine cells in this and a previous* study, at least eight different enteroendocrine cell types appear to be present in this stomachless fish: 1. C-terminal-gastrinimmunoreactive cells*, predominantly present in the upper parts of the folds of the proximal part of the intestinal bulb. 2. Metenkephalin-immunoreactive cells*, basally located in the folds of the first segment. 3. Pancreatic polypeptide (PP)-immunoreactive cells*, mainly present in the first half of the first segment. 4. Glucagon-like-immunoreactive (GLI) cells that are basally located in the folds of the first segment and that contain a different polypeptide (possibly glicentin) than pancreatic glucagon cells. 5. Substance P-immunoreactive cells, present in the upper parts of the folds throughout the gut. 6. C-terminal-neurotensin-immunoreactive cells, basally located in the folds throughout the first segment. 7. Vasoactive intestinal polypeptide (VIP)-immunoreactive cells, present in small numbers in the proximal part of the intestinal bulb. 8. Nonspecifically-immunoreactive cells*, found throughout the intestinal bulb. Many VIP-immunoreactive nerves have been demonstrated in the smooth muscle layer and myenteric plexus of the gut; furthermore some of them are peptide histidineisoleucine (PHI)-immunoreactive. Substance P-, somatostatin-, neurotensin- and met-enkephalin-immunoreactive nerves are also found. Thus, at least partial sequences of four different mammalian neuropeptide hormones (VIP, substance P, neurotensin, met-enkephalin) occur both in endocrine cells and enteric nerves of the gut of B. conchonius.  相似文献   

11.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

12.
The localization of various neuropeptides is described in the gut and in the hypothalamus in the rat. Evidence is given for the presence of material resembling corticotropin-like intermediate peptide in arcuate and periarcuate neurons, projecting to various hypothalamic nuclei, limbic areas and the thalamus. beta-Endorphin and glucagon decrease dopamine turnover in the median eminence, while secretin increases dopamine turnover and vasoactive intestinal polypeptide (VIP) has no effect. beta-Endorphin, VIP, secretin, and glucagon all produce discrete changes in norepinephrine turnover in various hypothalamic nuclei. Mainly increases of norepinephrine turnover were observed. These catecholamine turnover changes appear to cause changes in the secretion of prolactin and growth hormone. The results therefore indicate that gut hormones and opioid peptides may act directly on the hypothalamus on specific types of receptors to participate in the control of hypothalamic functions such as control of hormone secretion from the anterior pituitary and of food intake. It seems possible that gastrointestinal peptides released from the gastrointestinal tract into the circulation under certain circumstances could reach the hypothalamus and modulate its activity via the above-mentioned mechanisms. It may therefore be speculated that disturbances in gastrointestinal functions could lead to pathological changes in food intake via modulation of hypothalamic activity.  相似文献   

13.
We have studied in seven men, consuming less than 50 g alcohol daily, the effect of intravenous (i.v.) ethanol on (a) hormonally (secretin + CCK PZ) submaximally stimulated pancreatic secretion and (b) blood levels of pancreatic polypeptide (PP), vasoactive intestinal peptide (VIP) and somatostatin. After intravenous ethanol (600 mg/kg), pancreatic secretion decreased in all subjects and plasma levels of PP and VIP increased significantly. Moreover, there was a significant correlation between the mean inhibition of chymotrypsin output and the mean increase in PP plasma levels during the first 45 min following ethanol infusion. Therefore i.v. infusion of alcohol elicits release of PP and VIP and PP release could explain in part at least the alcohol-induced pancreatic inhibition observed in non-alcoholic men.  相似文献   

14.
Receptors for NPY in peripheral tissues bioassays   总被引:2,自引:0,他引:2  
Pheng LH  Regoli D 《Life sciences》2000,67(8):847-862
Neuropeptide Y (NPY) and its congeners, peptide YY (PYY) and the pancreatic polypeptide (PP), have a large spectrum of peripheral actions. NPY is found in peripheral neurons, co-localized or not with noradrenaline; PYY and PP are expressed in endocrine cells of the pancreas and in the intestine of vertebrates. NPY is the most abundant peptide in the brain and is involved in the regulation of food intake and of circadian rhythm. It intervenes also in the process of anxiety and memory. NPY is a potent vasoconstrictor, a cardiac stimulant, and may affect the gut through enteric neurons. PYY and PP act mainly on the gastrointestinal system; however, when in blood, they can cross-react with functional sites elsewhere and replace NPY in some parts of the brain (e.g. regions involved in feeding behavior). These peptides act through G protein coupled receptors (GPCR) of which five different types are known and have been cloned (1,2); functional sites (receptors) for NPY have been found in vessels, the gut, and in vasa deferentia (3-6).  相似文献   

15.
Peptidergic regulation of gastrointestinal motility in rodents   总被引:8,自引:0,他引:8  
Fujimiya M  Inui A 《Peptides》2000,21(10):1565-1582
Peptides involved in the endocrine and enteric nervous systems as well as in the central nervous system exert concerted action on gastrointestinal motility. Mechanical and chemical stimuli which induce peptide release from the epithelial endocrine cells are the earliest step in the initiation of peristaltic activities. Gut peptides exert hormonal effects, but peptide-containing stimulatory (Ach/substance P/tachykinin) and inhibitory (VIP/PACAP/NO) neurons are also involved in the induction of ascending contraction and descending relaxation, respectively. The dorsal vagal complex (DVC), located in the medulla of the brainstem, constitutes the basic neural circuitry of vago-vagal reflex control of gastrointestinal motility. Several gut peptides act on the DVC to modify vagal cholinergic reflexes directly (PYY and PP) or indirectly via afferent fibers in the periphery (CCK and GLP-1). The DVC is also a primary site of action of many neuropeptides (such as TRH and NPY) in mediating gastrointestinal motor activities. The identification over the last few years of a number of neuropeptide systems has greatly changed the field of feeding and body weight regulation. By exploring the brain and gut systems that employ recently identified peptidergic molecules, it will be possible to elaborate on the central and peripheral pathways involved in the regulation of gastrointestinal motility.  相似文献   

16.
Summary The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish,Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scatterd islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin-, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, -endorphin, -endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P-immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

17.
Summary Pancreatic polypeptide (PP) is a candidate hormone of unknown physiological significance. It is produced by a population of endocrine cells in the pancreas. In the present study a PP-like peptide was found to occur in the mammalian and avian central and peripheral nervous systems. Immunoreactive nerve fibres and nerve cell bodies were widely distributed in the brain. Dense accumulations of nerve fibres occurred in the following areas: nucleus accumbens, interstitial nucleus of the stria terminalis, para- and periventricular hypothalamic nuclei, and medial preoptic area. In addition, nerve fibres were regularly seen in cortical areas. Immunoreactive perikarya were observed in the following regions: cortex, nucleus accumbens, neostriatum and septum. In the gut, immunoreactive nerve fibers were distributed in the myenteric plexus, in smooth muscle, around blood vessels, and in the core of the villi. Immunoreactive perikarya occurred in the submucosal and myenteric plexus, suggesting that PP immunoreactive nerves are intrinsic to the gut.In the species examined, the neuronal PP-like peptide could be demonstrated with an antiserum raised against avian PP, but not with those raised against bovine or human PP. Thus, neuronal PP is distinct from the PP that occurs in pancreatic endocrine cells.  相似文献   

18.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   

20.
The endocrine cells in the gastrointestinal tract of the musk shrew were studied immunohistochemically. Eleven kinds of endocrine cells, immunoreactive for serotonin, somatostatin, gastrin, cholecistokinin, gastric inhibitory polypeptide, motilin, secretin, neurotensin, pancreatic glucagon, enteroglucagon and bovine pancreatic polypeptide, were revealed. In the stomach, serotonin-, somatostatin-, gastrin-, pancreatic glucagon- and enteroglucagon-immunoreactive cells were detected. The first three types of cells predominated and were more abundant in the pyloric glands than in the other stomach regions. In the small intestine, all types of endocrine cells were found, each having different distributions and relative frequencies. In the large intestine, 10 types of endocrine cells except cholecystokinin-immunoreactive cells were detected. Serotonin- and bovine pancreatic polypeptide-immunoreactive cells were more numerous in the large intestine than in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号