首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unidirectional conduction block of premature extrasystoles can lead to initiation of cardiac reentry, causing lethal arrhythmias including ventricular fibrillation. Multiple extrasystoles are often more effective at inducing unidirectional conduction block and reentry than a single extrasystole. Since the substrate for conduction block is spatial dispersion of refractoriness, in this study we investigate how the first extrasystole modulates this dispersion to influence the "vulnerable window" for conduction block by subsequent extrasystoles, particularly in relation to action potential duration restitution and conduction velocity restitution properties. Using a kinematic model to represent wavefront-waveback interactions and simulations with the Luo-Rudy model in a one-dimensional cable of cardiac cells, we show that in homogeneous tissue, a premature extrasystole can create a large dispersion of refractoriness leading to conduction block of a subsequent extrasystole. In heterogeneous tissue, however, a premature extrasystole can either reduce or enhance the dispersion of refractoriness depending on its propagation direction with respect to the previous beat. With multiple extrasystoles at random coupling intervals, vulnerability to conduction block is proportional to their number. In general, steep action potential duration restitution and broad conduction velocity restitution promote dispersion of refractoriness in response to multiple extrasystoles, and thus enhance vulnerability to conduction block. These restitution properties also promote spatially discordant alternans, a setting which is particularly prone to conduction block. The equivalent dispersion of refractoriness created dynamically in homogeneous tissue by spatially discordant alternans is more likely to cause conduction block than a comparable degree of preexisting dispersion in heterogeneous tissue.  相似文献   

2.
Congestive heart failure (CHF) predisposes to ventricular fibrillation (VF) in association with electrical remodeling of the ventricle. However, much remains unknown about the rate-dependent electrophysiological properties in a failing heart. Action potential properties in the left ventricular subepicardial muscles during dynamic pacing were examined with optical mapping in pacing-induced CHF (n=18) and control (n=17) rabbit hearts perfused in vitro. Action potential durations (APDs) in CHF were significantly longer than those observed for controls at basic cycle lengths (BCLs)>1,000 ms but significantly shorter at BCLs<400 ms. Spatial APD dispersions were significantly increased in CHF versus control (by 17-81%), and conduction velocity was significantly decreased in CHF (by 6-20%). In both groups, high-frequency stimulation (BCLs<150 ms) always caused spatial APD alternans; spatially concordant alternans and spatially discordant alternans (SDA) were induced at 60% and 40% in control, respectively, whereas 18% and 82% in CHF. SDA in CHF caused wavebreaks followed by reentrant excitations, giving rise to VF. Incidence of ventricular tachycardia/VFs elicited by high-frequency dynamic pacing (BCLs<150 ms) was significantly higher in CHF versus control (93% vs. 20%). In CHF, left ventricular subepicardial muscles show significant APD shortenings at short BCLs favoring reentry formations following wavebreaks in association with SDA. High-frequency excitation itself may increase the vulnerability to VF in CHF.  相似文献   

3.
The role of dynamic instabilities in the initiation of reentry in diseased (remodeled) hearts remains poorly explored. Using computer simulations, we studied the effects of altered Na(+) channel and cell coupling properties on the vulnerable window (VW) for reentry in simulated two-dimensional cardiac tissue with and without dynamic instabilities. We related the VW for reentry to effects on conduction velocity, action potential duration (APD), effective refractory period dispersion and restitution, and concordant and discordant APD alternans. We found the following: 1). reduced Na(+) current density and slowed recovery promoted postrepolarization refractoriness and enhanced concordant and discordant APD alternans, which increased the VW for reentry; 2). uniformly reduced cell coupling had little effect on cellular electrophysiological properties and the VW for reentry. However, randomly reduced cell coupling combined with decoupling promoted APD dispersion and alternans, which also increased the VW for reentry; 3). the combination of decreased Na(+) channel conductance, slowed Na(+) channel recovery, and cellular uncoupling synergistically increased the VW for reentry; and 4) the VW for reentry was greater when APD restitution slope was steep than when it was flat. In summary, altered Na(+) channel and cellular coupling properties increase vulnerability to reentrant arrhythmias. In remodeled hearts with altered Na(+) channel properties and cellular uncoupling, dynamic instabilities arising from electrical restitution exert important influences on the VW for reentry.  相似文献   

4.
T-wave alternans, an important arrhythmogenic factor, has recently been described in human fetuses. Here we sought to determine whether alternans can be induced in the embryonic mouse hearts, despite its underdeveloped sarcoplasmic reticulum (SR) and, if so, to analyze the response to pharmacological and autonomic interventions. Immunohistochemistry confirmed minimal sarcoplasmic-endoplasmic reticulum Ca-ATPase 2a expression in embryonic mouse hearts at embryonic day (E) 10.5 to E12.5, compared with neonatal or adult mouse hearts. We optically mapped voltage and/or intracellular Ca (Ca(i)) in 99 embryonic mouse hearts (dual mapping in 64 hearts) at these ages. Under control conditions, ventricular action potential duration (APD) and Ca(i) transient alternans occurred during rapid pacing at an average cycle length of 212 +/- 34 ms in 57% (n = 15/26) of E10.5-E12.5 hearts. Maximum APD restitution slope was steeper in hearts developing alternans than those that did not (2.2 +/- 0.6 vs. 0.8 +/- 0.4; P < 0.001). Disabling SR Ca(i) cycling with thapsigargin plus ryanodine did not significantly reduce alternans incidence (44%, n = 8/18, P = 0.5), whereas isoproterenol (n = 14) increased the incidence to 100% (P < 0.05), coincident with steepening APD restitution slope. Verapamil abolished Ca(i) transients (n = 9). Thapsigargin plus ryanodine had no major effects on Ca(i)-transient amplitude or its half time of recovery in E10.5 hearts, but significantly depressed Ca(i)-transient amplitude (by 47 +/- 8%) and prolonged its half time of recovery (by 18 +/- 3%) in E11.5 and older hearts. Embryonic mouse ventricles can develop cardiac alternans, which generally is well correlated with APD restitution slope and does not depend on fully functional SR Ca(i) cycling.  相似文献   

5.
To test whether hyperkalemia suppresses ventricular fibrillation (VF) by reducing the slope of the action potential duration (APD) restitution relation, we determined the effects of the extracellular K(+) concentration ([K(+)](o)) ([KCl] = 2.7-12 mM) on the restitution of APD and maximum upstroke velocity (V(max)) the magnitude of APD alternans and spatiotemporal organization during VF in isolated canine ventricle. As [KCl] was increased incrementally from 2.7 to 12 mM, V(max) was reduced progressively. Increasing [KCl] from 2.7 to 10 mM decreased the slope of the APD restitution relation at long, but not short, diastolic intervals (DI), decreased the range of DI over which the slope was >/=1, and reduced the maximum amplitude of APD alternans. At [KCl] = 12 mM, the range of DI over which the APD restitution slope was >/=1 increased, and the maximum amplitude of APD alternans increased. For [KCl] = 4-8 mM, the persistence of APD alternans at short DI was associated with maintenance of VF. For [KCl] = 10-12 mM, the spontaneous frequency during VF was reduced, and activation occurred predominantly at longer DI. The lack of APD alternans at longer DI was associated with conversion of VF to a periodic rhythm. These results provide additional evidence for the importance of APD restitution kinetics in the development of VF.  相似文献   

6.
The heterogeneities of electrophysiological properties of cardiac tissue are the main factors that control both arrhythmia induction and maintenance. Although the local increase of extracellular potassium ([K(+)](o)) due to coronary occlusion is a well-established metabolic response to acute ischemia, the role of local [K(+)](o) heterogeneity in phase 1a arrhythmias has yet to be determined. In this work, we created local [K(+)](o) heterogeneity and investigated its role in fast pacing response and arrhythmia induction. The left marginal vein of a Langendorff-perfused rabbit heart was cannulated and perfused separately with solutions containing 4, 6, 8, 10, and 12 mM of K(+). The fluorescence dye was utilized to map the voltage distribution. We tested stimulation rates, starting from 400 ms down to 120 ms, with steps of 5-50 ms. We found that local [K(+)](o) heterogeneity causes action potential (AP) alternans, 2:1 conduction block, and wave breaks. The effect of [K(+)](o) heterogeneity on electrical stability and vulnerability to arrhythmia induction was largest during regional perfusion with 10 mM of K(+). We detected three concurrent dynamics: normally propagating activation when excitation waves spread over tissue perfused with normal K(+), alternating 2:2 rhythm near the border of [K(+)](o) heterogeneity, and 2:1 aperiodicity when propagation was within the high [K(+)](o) area. [K(+)](o) elevation changed the AP duration (APD) restitution and shifted the restitution curve toward longer diastolic intervals and shorter APD. We conclude that spatial heterogeneity of the APD restitution, created with regional elevation of [K(+)](o), can lead to AP instability, 2:1 block, and reentry induction.  相似文献   

7.
The potential of chronic nicotine exposure for atrial fibrillation (AF) and atrial flutter (AFL) in hearts with and without chronic myocardial infarction (MI) remains poorly explored. MI was created in dogs by permanent occlusion of the left anterior descending coronary artery, and dogs were administered nicotine (5 mg.kg(-1).day(-1) sc) for 1 mo using osmotic minipumps. High-resolution epicardial (1,792 bipolar electrodes) and endocardial Halo catheters were used to map activation during induced atrial rhythms. Nicotine promoted inducible sustained AFL at a mean cycle length of 134 +/- 10 ms in all MI dogs (n = 6) requiring pacing and electrical shocks for termination. No AFL could be induced in MI dogs (n = 6), control (non-MI) dogs (n = 3) not exposed to nicotine, and dogs with no MI and exposed to nicotine (n = 3). Activation maps during AFL showed a single reentrant wavefront in the right atrium that rotated either clockwise (60%) or counterclockwise (40%) around the crista terminalis and through the isthmus. Ablation of the isthmus prevented the induction of AFL. Nicotine caused a significant (P < 0.01) but highly heterogeneous increase in atrial interstitial fibrosis (2- to 10-fold increase in left and right atria, respectively) in the MI group but only a 2-fold increase in the right atrium in the non-MI group. Nicotine also flattened (P < 0.05) the slope of the epicardial monophasic action potential duration (electrical restitution) curve of both atria in the MI but not in non-MI dogs. Two-dimensional simulation in an excitable matrix containing an isthmus and nicotine's restitutional and reduced gap junctional coupling (fibrosis) parameters replicated the experiments. Chronic nicotine in hearts with MI promotes AFL that closely resembles typical human AFL. Increased atrial interstitial fibrosis and flattened electrical restitution are important substrates for the AFL.  相似文献   

8.
Ventricular fibrillation (VF) is an important cause of sudden cardiac death and cardiovascular mortality in patients with cardiomyopathy. Although it was generally believed that chaotic reentrant wavefronts underlie VF in humans, there is emerging evidence of spatiotemporal organization during early VF. The mechanism of this organization of electrical activity in early VF is unknown in myopathic hearts. We studied early VF in vivo, intraoperatively in five cardiomyopathic patients. Simultaneous electrograms were obtained from the epicardium and endocardium in left ventricular cardiomyopathy and from the endocardium in right ventricular myopathy. The Hilbert transform was used to derive the phase of the electrograms. Rotors were identified by isolating phase singularity points. Rotors were present in all of the myopathic hearts studied during VF and cumulatively lasted a mean of 3.2 +/- 2.0 s of the 7.0 +/- 4.0 s of the VF segments analyzed. For each surface mapped, 3.6 +/- 2.9 rotors were identified for the duration mapped. The average number of cycles completed by these rotors was 4.9 +/- 4.9. The longest rotor lasted 10.2 +/- 6.2 rotations and lasted 2.0 +/- 1.2 s. The rotors on the endocardium had a cycle length of 192 +/- 33 ms compared with 220 +/- 15 ms on the epicardium (P=0.08). There is centrifugal activation of electrical activity from these rotors, and they give rise to domains that activate at faster rates with evidence of conduction block at the border with slower domains. These rotors frequently localized to border regions of myocardium with bipolar electrogram amplitude of <0.5 mV. The organization of electrical activity during early VF in myopathic human hearts is characterized by wavefronts emanating from a few rotors.  相似文献   

9.
Repolarization alternans is a harbinger of sudden cardiac death, particularly when it becomes spatially discordant. Alternans, a beat-to-beat alternation in the action potential duration (APD) and intracellular Ca (Cai), can arise from either tissue heterogeneities or dynamic factors. Distinguishing between these mechanisms in normal cardiac tissue is difficult because of inherent complex three-dimensional tissue heterogeneities. To evaluate repolarization alternans in a simpler two-dimensional cardiac substrate, we optically recorded voltage and/or Cai in monolayers of cultured neonatal rat ventricular myocytes during rapid pacing, before and after exposure to BAY K 8644 to enhance dynamic factors promoting alternans. Under control conditions (n = 37), rapid pacing caused detectable APD alternans in 81% of monolayers, and Cai transient alternans in all monolayers, becoming spatially discordant in 62%. After BAY K 8644 (n = 28), conduction velocity restitution became more prominent, and APD and Cai alternans developed and became spatially discordant in all monolayers, with an increased number of nodal lines separating out-of-phase alternating regions. Nodal lines moved closer to the pacing site with faster pacing rates and changed orientation when the pacing site was moved, as predicted for the dynamically generated, but not heterogeneity-based, alternans. Spatial APD gradients during spatially discordant alternans were sufficiently steep to induce conduction block and reentry. These findings indicate that spatially discordant alternans severe enough to initiate reentry can be readily induced by pacing in two-dimensional cardiac tissue and behaves according to predictions for a predominantly dynamically generated mechanism.  相似文献   

10.
11.
The influence of nicotine in modulating vulnerability to atrial tachycardia and fibrillation (AT/AF) remains ill defined. The isolated hearts of six young (2-3 mo) and six old (22-24 mo) male Fischer 344 rats were Langendorff perfused at 5 ml/min with oxygenated Tyrode solution at 37 degrees C, and the whole heart was also super-fused with warmed oxygenated Tyrode solution at 15 ml/min. Nicotine prolonged the interatrial conduction time and effective refractory period that were significantly (P < 0.05) higher in the old than in the young rats in a concentration-dependent manner. Nicotine had a biphasic effect on burst atrial pacing-induced AT in both groups, increasing it at 10-30 ng/ml while decreasing it at 50-100 ng/ml (P < 0.01). Nicotine at 10-100 ng/ml increased burst atrial pacing-induced AF in the young rats but suppressed it in the old rats (P < 0.01). Optical mapping showed the presence of multiple independent wavefronts during AF and a single periodic large wavefront during AT in both groups. Nicotine, at concentrations found in the blood of smokers (30-85 ng/ml), exerts biphasic effects on inducible AT/AF in young rats and suppresses it in the old rats by causing high degrees of interatrial conduction block.  相似文献   

12.
The effects of acute amiodarone infusion on dynamics of ventricular fibrillation (VF) are unclear. Six isolated swine right ventricles (RVs) were studied in vitro. Activation patterns during VF were mapped optically, whereas action potentials were recorded with a glass microelectrode. At baseline, VF was associated with frequent spontaneous wave breaks. Amiodarone (2.5 microg/ml) reduced spontaneous wave breaks and increased the cycle length (CL) of VF from 83.3 +/- 17.8 ms at baseline to 118.4 +/- 25.8 ms during infusion (P < 0.05). Amiodarone increased the reentrant wave front CL (114.4 +/- 15.5 vs. 78.2 +/- 19.0 ms, P < 0.05) and central core area (4.1 +/- 3.8 vs. 0.9 +/- 0.3 mm2, P < 0.05). Within 30 min of infusion, VF terminated (n = 1), converted to ventricular tachycardia (VT) (n = 1) or continued at a slower rate (n = 4). Amiodarone flattened the APD restitution curves. We conclude that amiodarone reduced spontaneous wave breaks. It might terminate VF or convert VF to VT. These effects were associated with the flattening of APD restitution slope and increased core size of reentrant wave fronts.  相似文献   

13.
Cardiac restitution is an important factor in arrhythmogenesis. Steep positive action potential duration and conduction velocity (CV) restitution slopes promote alternans and reentrant arrhythmias. We examined the consequences of supernormal conduction (characterized by a negative CV restitution slope) on patterns of conduction and alternans in strands of Luo-Rudy model cells and in cultured cardiac cell strands. Interbeat intervals (IBIs) were analyzed as a function of distance during S1S2 protocols and during pacing at alternating cycle lengths. Supernormal conduction was induced by decreasing [K+]o. In control [K+]o simulations, S1S2 intervals converged toward basic cycle length with a length constant determined by both CV and the CV restitution slope. During alternant pacing, the amplitude of IBI alternans converged with a shorter length constant, determined also by the action potential duration restitution slope. In contrast, during supernormal conduction, S1S2 intervals and the amplitude of alternans diverged. This amplification (resonance) led to phase-locked or more complex alternans patterns, and then to distal conduction block. The convergence/divergence of IBIs was verified in the cultured strands, in which naturally occurring tissue heterogeneities resulted in prominent discontinuities of the spatial IBI profiles. We conclude that supernormal conduction potentiates alternans and spatial analysis of IBIs represents a powerful method to locate tissue heterogeneities.  相似文献   

14.
We tested the hypothesis that sildenafil, singly or in combination with nitric oxide (NO) donors, promotes ventricular tachycardia (VT) and ventricular fibrillation (VF). Vulnerability to VT/VF was tested by rapid pacing in eight isolated normal swine right ventricles (RV). The endocardial activation was optically mapped, and the dynamic action potential duration (APD) restitution curves were constructed with metal microelectrodes. At baseline, no VT/VF could be induced. Sildenafil (0.2 microg/ml) or NO donor singly or in combination did not alter VT/VF vulnerability. However, when 2 microg/ml sildenafil was combined with NO donors, the incidence of VT and VF rose significantly (P < 0.01). VT with a single periodic wavefront was induced in five of eight RVs, and VF with multiple wavefronts was induced in all eight RVs. The sildenafil-NO donor pro-VT/VF combination significantly increased the maximum slope of the APD restitution curve and the amplitude of the APD alternans. The pro-VT/VF effects of sildenafil were reversible after drug-free Tyrode solution perfusion. We conclude that a sildenafil (2 microg/ml) and NO donor combination increases VT/VF vulnerability in the normal RV by a mechanism compatible with the restitution hypothesis.  相似文献   

15.
Cell coupling is considered to be important for cardiac action potential propagation and arrhythmogenesis. We carried out computer simulations to investigate the effects of stimulation strength and cell-to-cell coupling on action potential duration (APD) restitution, APD alternans, and stability of reentry in models of isolated cell, one-dimensional cable, and two-dimensional tissue. Phase I formulation of the Luo and Rudy action potential model was used. We found that stronger stimulation resulted in a shallower APD restitution curve and onset of APD alternans at a faster pacing rate. Reducing diffusive coupling between cells prolonged APD. Weaker diffusive currents along the direction of propagation steepened APD restitution and caused APD alternans to occur at a slower pacing rate in tissue. Diffusive current due to curvature changed APD but had little effect on APD restitution slope and onset of instability. Heterogeneous cell coupling caused APD inhomogeneities in space. Reduction in coupling strength either uniformly or randomly had little effect on the rotation period and stability of a reentry, but random cell decoupling slowed the rotation period and, thus, stabilized the reentry, preventing it from breaking up into multiple waves. Therefore, in addition to its effects on action potential conduction velocity, diffusive cell coupling also affects APD in a rate-dependent manner, causes electrophysiological heterogeneities, and thus modulates the dynamics of cardiac excitation. These effects are brought about by the modulation of ionic current activation and inactivation.  相似文献   

16.
Electrocardiographic QT- and T-wave alternans, presaging ventricular arrhythmia, reflects compromised adaptation of action potential (AP) duration (APD) to altered heart rate, classically attributed to incomplete Na(v)1.5 channel recovery prior to subsequent stimulation. The restitution hypothesis suggests a function whose slope directly relates to APD alternans magnitude, predicting a critical instability condition, potentially generating arrhythmia. The present experiments directly test for such correlations among arrhythmia, APD alternans and restitution. Mice haploinsufficient in the Scn5a, cardiac Na(+) channel gene (Scn5a(+/-)), previously used to replicate Brugada syndrome, were used, owing to their established arrhythmic properties increased by flecainide and decreased by quinidine, particularly in right ventricular (RV) epicardium. Monophasic APs, obtained during pacing with progressively decrementing cycle lengths, were systematically compared at RV and left ventricular epicardial and endocardial recording sites in Langendorff-perfused Scn5a(+/-) and wild-type hearts before and following flecainide (10 μM) or quinidine (5 μM) application. The extent of alternans was assessed using a novel algorithm. Scn5a(+/-) hearts showed greater frequencies of arrhythmic endpoints with increased incidences of ventricular tachycardia, diminished by quinidine, and earlier onsets of ventricular fibrillation, particularly following flecainide challenge. These features correlated directly with increased refractory periods, specifically in the RV, and abnormal restitution and alternans properties in the RV epicardium. The latter variables were related by a unique, continuous higher-order function, rather than a linear relationship with an unstable threshold. These findings demonstrate a specific relationship between alternans and restitution, as well as confirming their capacity to predict arrhythmia, but implicate mechanisms additional to the voltage feedback suggested in the restitution hypothesis.  相似文献   

17.
Ventricular tachycardia (VT) in Brugada Syndrome patients often originates in the right ventricular outflow tract (RVOT). We explore the physiological basis for this observation using murine whole heart preparations. Ventricular bipolar electrograms and monophasic action potentials were recorded from seven epicardial positions in Langendorff-perfused wild-type and Scn5a+/- hearts. VT first appeared in the RVOT, implicating it as an arrhythmogenic focus in Scn5a+/- hearts. RVOTs showed the greatest heterogeneity in refractory periods, response latencies, and action potential durations, and the most fractionated electrograms. However, incidences of concordant alternans in dynamic pacing protocol recordings were unaffected by the Scn5a+/- mutation or pharmacological intervention. Conversely, particularly at the RVOT, Scn5a+/- hearts showed earlier and more frequent transitions into discordant alternans. This was accentuated by flecainide, but reduced by quinidine, in parallel with their respective pro- and anti-arrhythmic effects. Discordant alternans preceded all episodes of VT. The RVOT of Scn5a+/- hearts also showed steeper restitution curves, with the diastolic interval at which the gradient equaled one strongly correlating with the diastolic interval at which discordant alternans commenced. We attribute the arrhythmic tendency within the RVOT to the greater spatial heterogeneities in baseline electrophysiological properties. These, in turn, give rise to a tendency to drive concordant alternans phenomena into an arrhythmogenic discordant alternans. Our findings may contribute to future work investigating possible pharmacological treatments for a disease in which the current mainstay of treatment is implantable cardioverter defibrillator implantation.  相似文献   

18.
In normal heart, ventricular fibrillation can be induced by a single properly timed strong electrical or mechanical stimulus. A mechanism first proposed by Winfree and coined the "pinwheel experiment" emphasizes the timing and strength of the stimulus in inducing figure-of-eight reentry. However, the effects of cellular electrophysiological properties on vulnerability to reentry in the pinwheel scenario have not been investigated. In this study, we extend Winfree's pinwheel experiment to show how the vulnerability to reentry is affected by the graded action potential responses induced by a strong premature stimulus, action potential duration (APD), and APD restitution in simulated monodomain homogeneous two-dimensional tissue. We find that a larger graded response, longer APD, or steeper APD restitution slope reduces the vulnerable window of reentry. Strong graded responses and long APD promote tip-tip interactions at long coupling intervals, causing the two initiated spiral wave tips to annihilate. Steep APD restitution promotes wave front-wave back interaction, causing conduction block in the central common pathway of figure-of-eight reentry. We derive an analytical treatment that shows good agreement with numerical simulation results.  相似文献   

19.
It was hypothesized that quantitative sinus rhythm electrogram measurements could be used to predict conduction events that result from premature stimulation and reentrant ventricular tachycardia inducibility. Sinus rhythm activation and electrogram-duration maps were constructed from bipolar electrograms acquired at 196-312 sites in the epicardial border zone of 43 canine hearts (25 with and 18 without reentrant ventricular tachycardia inducible by premature stimulation). From these maps, lines of electrical discontinuity, where blocks would occur during premature excitation, were estimated. The mean error in distance between the estimated and actual block lines of premature excitation was 0.97 +/- 0.49 cm. Based on the quantitative characteristics of the activation and electrogram-duration maps and the longest block line that formed during premature excitation, it was possible to predict whether reentry would occur (sensitivity, 94.7%; specificity, 79.6%). In reentry experiments, the breakthrough-point location along the unidirectional arc of the block that initiated reentry was also predictable (mean error, 0.79 +/- 0.19 cm). Sinus rhythm measurements are useful to predict conduction events that result from premature stimulation and reentry inducibility.  相似文献   

20.
The focal source hypothesis of ventricular fibrillation (VF) posits that rapid activation from a focal source, rather than action potential duration (APD) restitution properties, is responsible for the maintenance of VF. We injected aconitine (100 microg) into normal isolated perfused swine right ventricles (RVs) stained with 4-[beta-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) for optical mapping studies. Within 97 +/- 163 s, aconitine induced ventricular tachycardia (VT) with a mean cycle length 268 +/- 37 ms, which accelerated before converting to VF. Drugs that flatten the APD restitution slope, including diacetyl monoxime (10-20 mM, n = 6), bretylium (10-20 microg/ml, n = 3), and verapamil (2-4 microg/ml, n = 3), reversibly converted VF to VT in all cases. In two RVs, VF persisted despite of the excision of the aconitine site. Simulations in two-dimensional cardiac tissue showed that once VF was initiated, it remained sustained even after the "aconitine" site was eliminated. In this model of focal source VF, the VT-to-VF transition occurred due to a wave break outside the aconitine site, and drugs that flattened the APD restitution slope converted VF to VT despite continuous activation from aconitine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号