首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the effects of two redox forms of nitric oxide, NO(+) [liberated by S-nitroso-N-acetyl-penicillamine (SNAP)] and NO. [liberated by 3-morpholinosydnonimine (SIN-1) in the presence of superoxide dismutase], on cytosolic concentration of Ca(2+) ([Ca(2+)](i); single cells) and tone (intact strips) obtained from human main stem bronchi and canine trachealis. SNAP evoked a rise in [Ca(2+)](i) that was unaffected by removing external Ca(2+) but was markedly reduced by depleting the internal Ca(2+) pool using cyclopiazonic acid (10(-5) M). Dithiothreitol (1 mM) also antagonized the Ca(2+) transient as well as the accompanying relaxation. SNAP attenuated responses to 15 and 30 mM KCl but not those to 60 mM KCl, suggesting the involvement of an electromechanical coupling mechanism rather than a direct effect on the contractile apparatus or on Ca(2+) channels. SNAP relaxations were sensitive to charybdotoxin (10(-7) M) or tetraethylammonium (30 mM) but not to 4-aminopyridine (1 mM). Neither SIN-1 nor 8-bromoguanosine 3',5'-cyclic monophosphate had any significant effect on resting [Ca(2+)](i), although both of these agents were able to completely reverse tone evoked by carbachol (10(-7) M). We conclude that NO(+) causes release of internal Ca(2+) in a cGMP-independent fashion, leading to activation of Ca(2+)-dependent K(+) channels and relaxation, whereas NO. relaxes the airways through a cGMP-dependent, Ca(2+)-independent pathway.  相似文献   

2.
The effect of nitric oxide (NO) on calcium current (I(Ca)) and intracellular calcium concentration ([Ca(2+)](i)) in primarily cultured dorsal root ganglion (DRG) neurons was investigated from neonatal rats. I(Ca) and [Ca(2+)](i) were simultaneously recorded using perforated-patch technique in combination with fluorescence measurement from single DRG neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), inhibited I(Ca) in small-diameter neurons without significant change in voltage-dependence of activation and activation time constants. SNP and SNAP also reduced the transient [Ca(2+)](i) peak accompanied by I(Ca). Inhibition by NO was reproducible, but gradually desensitized. In some DRG neurons, SNP and SNAP increased basal [Ca(2+)](i) in concentration of 10 microM with little effect on NO-induced inhibition of I(Ca). 8-Br-cGMP, a permeable cGMP analog, mimicked the effects of SNP and SNAP. These results suggest that, in DRG neurons, NO has inhibitory effect on I(Ca), which is independent of NO-induced increase of basal [Ca(2+)](i), through cGMP-dependent pathway.  相似文献   

3.
Previous studies have demonstrated the presence of myocardial depression in clinical and experimental septic shock. This response is mediated, in part, through circulating TNF-alpha-induced, nitric oxide-dependent, depression of basal myocyte contractility. Other mechanisms of early myocardial dysfunction involving decreased response to adrenergic stimulation may exist. This study evaluated the presence and nitric oxide dependence of impaired adrenergic response to TNF-alpha in in vitro cardiac myocytes. The contraction of electrically paced neonatal rat cardiac myocytes in tissue culture was quantified using a closed-loop video tracking system. TNF-alpha induced depression of baseline contractility over the first 20 min of cardiac myocyte exposure. This effect was blocked by N-methyl-arginine (NMA), a nitric oxide synthase inhibitor, in all studies. Contractile and cAMP response to increasing concentrations of isoproterenol was deficient in cardiac myocytes exposed to TNF-alpha regardless of the presence of NMA. In contrast, increasing concentrations of forskolin (a direct stimulant of adenylate cyclase) and dibutyryl cAMP (a metabolically active membrane-soluble analog of cAMP) completely reversed TNF-alpha-mediated depression, though only in the presence of NMA. Forskolin-stimulated cAMP generation remained intact regardless of NMA. Increasing concentrations of exogenous calcium chloride, unlike other inotropic agents, corrected TNF-alpha-mediated defects of contractility independent of the presence of NMA. These data suggest that TNF-alpha exposure is associated with a second nitric oxide-independent but calcium-dependent early depressant mechanism that is manifested by reduced contractile and cAMP response to beta-adrenergic stimulation.  相似文献   

4.
In guinea pig, primate and man, nitric oxide (NO)-induced regulation of myometrial smooth muscle contraction is distinct from other smooth muscles because cyclic guanosine 3',5'-cyclic monophosphate (cGMP) accumulation is neither necessary nor sufficient to relax the tissue. To further our understanding of the mechanism of action of NO in myometrium, we employed the NO donors, S-nitroso-N-acetylpenicillamine (SNAP), and 3-morpholinosyndonimine (SIN-1) proposed to relax airway smooth muscle by disparate mechanisms involving elevation in intracellular calcium ([Ca(2+)](i)) or cGMP accumulation, respectively. Treatment of guinea pig myometrial smooth muscle with either NO donor at concentrations thought to produce maximal relaxation of smooth muscles resulted in significant elevations in cGMP that were accompanied by phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein (VASP), shown here for the first time to be present and phosphorylated in myometrium. Stimulation of myometrial strips with oxytocin (OT, 1 microM) produced an immediate increase in contractile force that persisted in the continued presence of the agonist. Addition of SNAP (100 microM) in the presence of OT relaxed the tissue completely as might be expected of an NO donor. SIN-1 failed to relax the myometrium at any concentration tested up to 300 microM. In Fura-2 loaded myometrial cells prepared from guinea pig, addition of SNAP (100 microM) in the absence of other agonists caused a significant, reproducible elevation of intracellular calcium while SIN-1 employed under the same conditions did not. Our data further support the notion that NO action in myometrium is distinct from that in other smooth muscles and underscores the possibility that discrete regional changes in [Ca(2+)](i), rather than cGMP, signal NO-induced relaxation of the muscle.  相似文献   

5.
Ren J  Relling DP 《Peptides》2006,27(6):1415-1419
Uncorrected obesity is often accompanied by ventricular contractile dysfunction, elevation of the lipotoxic mediator ceramide and the obesity gene product leptin. Both ceramide and leptin participate in the regulation of cardiac function and are speculated to play roles in obesity-related cardiac dysfunctions. The purpose of this study was to examine the effect of ceramide on leptin-elicited cardiac contractile response. Adult rat left ventricular myocytes were incubated for 24 h with low (5 nM) or high (50 nM) concentration of leptin in the absence or presence of the active ceramide analog C2-dihydroceramide (25 microM). Contractile and intracellular Ca2+ properties were evaluated using an IonOptix MyoCam system including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ rise (Delta[Ca2+]) and intracellular Ca2+ decay. While ceramide did not elicit any effect on cell mechanics and intracellular Ca2+ transients, it sensitized leptin-induced effects on myocyte shortening and intracellular Ca2+ transients. In the absence of ceramide, 5 nM leptin had no effect on cell mechanics while 50 nM depressed PS, +/-dL/dt, Delta[Ca2+] and prolonged TR90. With ceramide co-incubation, 5 nM leptin depressed PS, +/-dL/dt, Delta[Ca2+] and prolonged TR90 whereas 50 nM leptin-elicited effects on PS, +/-dL/dt, Delta[Ca2+] and TR90 were significantly potentiated in addition to slowing intracellular Ca2+ decay. In summary, our data demonstrated that ceramide sensitizes cardiac depressive effects of leptin and may contribute to hyperleptinemia-related cardiac contractile dysfunction.  相似文献   

6.
Experiments were performed to examine whether the protein phosphatase inhibitor cantharidin blocks the anti-adrenergic effect of adenosine A(1) receptor stimulation. In electrically stimulated adult rat ventricular myocytes loaded with the intracellular calcium concentration ([Ca(2+)](i)) indicator fluo-3, isoproterenol (10 nM) increased systolic [Ca(2+)](i) by 46%, increased twitch amplitude by 56%, and increased total cellular cAMP content by 140%. The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentlyadenosine (CCPA) reduced isoproterenol-stimulated [Ca(2+)](i) and contractility by 87 and 80%, respectively, but reduced cAMP content by only 18%. Cantharidin had no effects on myocyte [Ca(2+)](i), contractility, or cAMP in the absence or presence of isoproterenol but blocked the effects of CCPA on [Ca(2+)](i) and contractility by approximately 44%. Cantharidin had no effect on CCPA attenuation of isoproterenol-induced increases in cAMP. Pretreatment with CCPA also reduced the increase in contractile parameters produced by the direct cAMP-dependent protein kinase A (PKA) activator 8-bromocAMP. These results suggest that activation of protein phosphatases mediate, in part, the anti-adrenergic effect of adenosine A(1) receptor activation in ventricular myocardium.  相似文献   

7.
We exposed adherent neutrophils to the nitric oxide (NO)-radical donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), and sodium nitroprusside (SNP) to study the role of NO in morphology and Ca(2+) signaling. Parallel to video imaging of cell morphology and migration in neutrophils, changes in intracellular free Ca(2+) ([Ca(2+)](i)) were assessed by ratio imaging of Fura-2. NO induced a rapid and persistent morphological hyperpolarization followed by migrational arrest that usually lasted throughout the 10-min experiments. Addition of 0.5-800 microM SNAP caused concentration-dependent elevation of [Ca(2+)](i) with an optimal effect at 50 microM. This was probably induced by NO itself, because no change in [Ca(2+)](i) was observed after treatment with NO donor byproducts, i.e. D-penicillamine, glutathione, or potassium cyanide. Increasing doses of SNAP (>/=200 microM) attenuated the Ca(2+) response to the soluble chemotactic stimulus formyl-methionyl-leucyl-phenylalanine (fMLP), and both NO- and fMLP-induced Ca(2+) transients were abolished at 800 microM SNAP or more. In kinetic studies of fluorescently labeled actin cytoskeleton, NO markedly reduced the F-actin content and profoundly increased cell area. Immunoblotting to investigate the formation of nitrotyrosine residues in cells exposed to NO donors did not imply nitrosylation, nor could we mimic the effects of NO with the cell permeant form of cGMP, i.e., 8-Br-cGMP. Hence these processes were probably not the principal NO targets. In summary, NO donors initially increased neutrophil morphological alterations, presumably due to an increase in [Ca(2+)](i), and thereafter inhibited such shape changes. Our observations demonstrate that the effects of NO donors are important for regulation of cellular signaling, i.e., Ca(2+) homeostasis, and also affect cell migration, e.g., through effects on F-actin turnover. Our results are discussed in relation to the complex mechanisms that govern basic cell shape changes, required for migration.  相似文献   

8.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H(2)O(2)-modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H(2)O(2) treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca(2+) ([Ca(2+)](i)), and document that activity of the L-type Ca(2+) channel is necessary for the H(2)O(2)-promoted increase in sarcomere shortening and of [Ca(2+)](i). Using the chemical NO sensor Cu(2)(FL2E), we discovered that the H(2)O(2)-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca(2+) channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H(2)O(2)-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca(2+)](i) as well as the activation of protein kinase C (PKC). We also found that H(2)O(2)-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca(2+) channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H(2)O(2)-promoted eNOS phosphorylation. Here we present evidence documenting that H(2)O(2)-promoted Akt phosphorylation is dependent on activation of the L-type Ca(2+) channel, but is independent of PKC. These studies establish key roles for Ca(2+)- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H(2)O(2).  相似文献   

9.
The effects of 6-8 wk of high-intensity sprint training (HIST) on rat myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients were investigated. Compared with sedentary (Sed) myocytes, HIST induced a modest (5%) but significant (P < 0.0005) increase in cell length with no changes in cell width. In addition, the percentage of myosin heavy chain alpha-isoenzyme increased significantly (P < 0.02) from 0.566 +/- 0.077% in Sed rats to 0.871 +/- 0.006% in HIST rats. At all three (0.6, 1.8, and 5 mM) extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, maximal shortening amplitudes and maximal shortening velocities were significantly (P < 0.0001) lower and half-times of relaxation were significantly (P < 0.005) longer in HIST myocytes. HIST myocytes had significantly (P < 0.0001) higher diastolic [Ca(2+)](i) levels. Compared with Sed myocytes, systolic [Ca(2+)](i) levels in HIST myocytes were higher at 0.6 mM [Ca(2+)](o), similar at 1.8 mM [Ca(2+)](o), and lower at 5 mM [Ca(2+)](o). The amplitudes of [Ca(2+)](i) transients were significantly (P < 0.0001) lower in HIST myocytes. Half-times of [Ca(2+)](i) transient decline, an estimate of sarcoplasmic reticulum (SR) Ca(2+) uptake activity, were not different between Sed and HIST myocytes. Compared with Sed hearts, Western blots demonstrated a significant (P < 0.03) threefold decrease in Na(+)/Ca(2+) exchanger, but SR Ca(2+)-ATPase and calsequestrin protein levels were unchanged in HIST hearts. We conclude that HIST effected diminished myocyte contractile function and [Ca(2+)](i) transient amplitudes under the conditions studied. We speculate that downregulation of Na(+)/Ca(2+) exchanger may partly account for the decreased contractility in HIST myocytes.  相似文献   

10.
We have shown previously that partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase activates signal pathways that regulate myocyte growth and growth-related genes and that increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and reactive oxygen species (ROS) are two essential second messengers within these pathways. The aim of this work was to explore the relation between [Ca(2+)](i) and ROS. When myocytes were in a Ca(2+)-free medium, ouabain caused no change in [Ca(2+)](i), but it increased ROS as it did when the cells were in a Ca(2+)-containing medium. Ouabain-induced increase in ROS also occurred under conditions where there was little or no change in [Na(+)](i). Exposure of myocytes in Ca(2+)-free medium to monensin did not increase ROS. Increase in protein tyrosine phosphorylation, an early event induced by ouabain, was also independent of changes in [Ca(2+)](i) and [Na(+)](i). Ouabain-induced generation of ROS in myocytes was antagonized by genistein, a dominant negative Ras, and myxothiazol/diphenyleneiodonium, indicating a mitochondrial origin for the Ras-dependent ROS generation. These findings, along with our previous data, indicate that increases in [Ca(2+)](i) and ROS in cardiac myocytes are induced by two parallel pathways initiated at the plasma membrane: One being the ouabain-altered transient interactions of a fraction of the Na(+)/K(+)-ATPase with neighboring proteins (Src, growth factor receptors, adaptor proteins, and Ras) leading to ROS generation, and the other, inhibition of the transport function of another fraction of the Na(+)/K(+)-ATPase leading to rise in [Ca(2+)](i). Evidently, the gene regulatory effects of ouabain in cardiac myocytes require the downstream collaborations of ROS and [Ca(2+)](i).  相似文献   

11.
Nitric oxide (NO) and peroxynitrite (ONOO) are said to destroy norepinephrine (NE). We studied the role of NE decomposition by NO donors and ONOO as they affect the contractile activity of NE in rat denuded thoracic aorta. First, we determined the relaxing effect of NO donors (SNAP, PROLI/NO, Sodium nitrite, SIN-1) and ONOO after precontraction by NE (1 microM). SNAP and SIN-1 (EC(50) 50-110 nM) were more active than PROLI/NO, Sodium nitrite or ONOO (EC(50) 19-30 microM). The relaxing effect of NO donors and ONOO were decreased by ODQ (10 microM), a guanylate cyclase inhibitor. Second, we compared the contractile activity of NE before and after preincubation with NO donors or ONOO in presence of ODQ. NE (1 microM) was incubated with NO donors or ONOO at the concentrations of 0.1 mM in both Krebs solution or phosphate buffer (pH 7.4; 0.1 M) for 10 minutes at 37 degrees C. NE evoked the aorta contraction in the same concentrations before and after preincubation with NO donors. In contrast, ONOO decreased effect of NE, EC(50) was measured at 4.3+/-0.3 nM and 13.4+/-1.6 nM, before and after preincubation of NE with ONOO respectively. Third, we measured the NE concentration using the HPLC method. We revealed that the concentration of NE after preincubation with NO donors was unaltered. However HPLC measurement revealed that NE concentration after preincubation with ONOO was reduced 2-3-fold. Therefore, under these experimental conditions ONOO, but not NO donors, was capable of destroying NE.  相似文献   

12.
Stimulation of cardiac beta(2)-adrenergic receptor (beta(2)-AR) or delta-opioid receptor (DOR) exerts a similar degree of cardioprotection against myocardial ischemia in experimental models. We hypothesized that delta-opioid-initiated cardioprotection is mediated by the intrinsic cardiac adrenergic (ICA) cell via enhanced epinephrine release. Using immunohistochemical and in situ hybridization methods, we detected in situ tyrosine hydroxylase (TH) mRNA and TH immunoreactivity that was colocalized with DOR immunoreactivity in ICA cells in human and rat hearts. Western blot analysis detected DOR protein in ICA cells isolated from rat ventricular myocytes. The physiology of DOR expression was examined by determining changes of cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients in isolated rat ICA cells using fluorescence spectrophotometry. Exposing the selective delta-opioid agonist D-[Pen(2,5)]enkephalin (DPDPE) to ICA cells increased [Ca(2+)](i) transients in a concentration-dependent manner. Such an effect was abolished by the Ca(2+) channel blocker nifedipine. HPLC-electrochemical detection demonstrated a 2.4-fold increase in epinephrine release from ICA cells following DPDPE application. The significance of the ICA cell and its epinephrine release in delta-opioid-initiated cardioprotection was demonstrated in the rat myocardial infarction model and ICA cell-ventricular myocyte coculture. DPDPE administered before coronary artery occlusion or simulated ischemia-reperfusion reduced left ventricular infarct size by 54 +/- 15% or myocyte death by 26 +/- 4%, respectively. beta(2)-AR blockade markedly attenuated delta-opioid-initiated infarct size-limiting effect and abolished delta-opioid-initiated myocyte survival protection in rat ICA cell-myocyte coculture. Furthermore, delta-opioid agonist exerted no myocyte survival protection in the absence of cocultured ICA cells during ischemia-reperfusion. We conclude that delta-opioid-initiated myocardial infarct size reduction is primarily mediated via endogenous epinephrine/beta(2)-AR signaling pathway as a result of ICA cell activation.  相似文献   

13.
Cellular antioxidant and pro-oxidant actions of nitric oxide   总被引:9,自引:0,他引:9  
We describe a biphasic action of nitric oxide (NO) in its effects on oxidative killing of isolated cells: low concentrations protect against oxidative killing, while higher doses enhance killing, and these two effects occur by distinct mechanisms. While low doses of NO (from (Z)-1-[N-(3-ammonio propyl)-N-(n-propyl)-amino]-diazen-1-ium-1,2(2) diolate [PAPA/NO] or S-nitroso-N-acetyl-L-penicillamine [SNAP] prevent killing of rat hepatocytes by t-butylhydroperoxide (tBH), further increasing doses result in increased killing. Similar effects occur with rat hepatoma cells treated with PAPA/NO and tBH or H2O2. Increased killing with higher concentrations of NO donor is due to both NO and tBH, because NO donor alone is without effect. Glutathione (GSH) is not involved in either of these actions. Based on measurements of thiobarbituric acid-reactive substances (TBARS) and effects of lipid radical scavenger (DPPD) and deferoxamine, the protective effect, but not the enhancing effect, involves peroxidative chemistry. Fructose has no effect on tBH killing alone but provides substantial protection against killing by higher concentrations of NO plus tBH, suggesting that the enhancing effect involves mitochondrial dysfunction. Hepatocytes, when stimulated to produce NO endogenously, become resistant to tBH killing, indicative of the presence of an NO-triggered antioxidant defensive mechanism. The finding that the protective effects of low concentrations of NO and the harmful effects of high concentrations of NO are fundamentally different in nature suggest that therapeutic interventions could be designed, which selectively prevent its pro-oxidant activity at high concentrations, thus converting NO from a "Janus-faced" modulator of oxidant injury into a "pure" protectant.  相似文献   

14.
Z Ungvari  A Koller 《Journal of applied physiology》2001,91(1):522-7; discussion 504-5
To clarify the contribution of intracellular Ca(2+) concentration ([Ca(2+)](i))-dependent and -independent signaling mechanisms in arteriolar smooth muscle (aSM) to modulation of arteriolar myogenic tone by nitric oxide (NO), released in response to increases in intraluminal flow from the endothelium, changes in aSM [Ca(2+)](i) and diameter of isolated rat gracilis muscle arterioles (pretreated with indomethacin) were studied by fluorescent videomicroscopy. At an intraluminal pressure of 80 mmHg, [Ca(2+)](i) significantly increased and myogenic tone developed in response to elevations of extracellular Ca(2+) concentration. The Ca(2+) channel inhibitor nimodipine substantially decreased [Ca(2+)](i) and completely inhibited myogenic tone. Dilations to intraluminal flow (that were inhibited by N(omega)-nitro-L-arginine methyl ester) or dilations to the NO donor S-nitroso-N-acetyl-DL-penicillamine (that were inhibited by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) were not accompanied by substantial decreases in aSM [Ca(2+)](i). 8-Bromoguanosine cGMP and the cGMP-specific phosphodiesterase inhibitor zaprinast significantly dilated arterioles yet elicited only minimal decreases in [Ca(2+)](i). Thus flow-induced endothelial release of NO elicits relaxation of arteriolar smooth muscle by a cGMP-dependent decrease of the Ca(2+) sensitivity of the contractile apparatus without substantial changes in the pressure-induced level of [Ca(2+)](i).  相似文献   

15.
16.
The role of 3,5,3'-triiodo-l-thyronine (T3) and its metabolite 3,5-diiodo-l-thyronine (T2) in modulating the intracellular Ca(2+) concentration ([Ca(2+)](i)) and endogenous nitric oxide (NO) synthesis was evaluated in pituitary GH(3) cells in the absence or presence of extracellular Ca(2+). When applied in Ca(2+)-free solution, T2 and T3 increased [Ca(2+)](i), in a dose-dependent way, and NO levels. Inhibition of neuronal NO synthase by N(G)-nitro-l-arginine methyl ester and l-n(5)-(1-iminoethyl)ornithine hydrochloride significantly reduced the [Ca(2+)](i) increase induced by T2 and T3. However, while depletion of inositol trisphosphate-dependent Ca(2+) stores did not interfere with the T2- and T3-induced [Ca(2+)](i) increases, the inhibition of phosphatidylinositol 3-kinase by LY-294002 and the dominant negative form of Akt mutated at the ATP binding site prevented these effects. Furthermore, the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone prevented the increases in both [Ca(2+)](i) and NO elicited by T2 or T3. Interestingly, rotenone blocked the early [Ca(2+)](i) increases elicited by T2 and T3, while antimycin prevented only that elicited by T3. Inhibition of mitochondrial Na(+)/Ca(2+) exchanger by CGP37157 significantly reduced the [Ca(2+)](i) increases induced by T2 and T3. In the presence of extracellular calcium (1.2 mM), under carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, T2 and T3 increased both [Ca(2+)](i) and intracellular Na(+) concentration; nimodipine reduced the [Ca(2+)](i) increases elicited by T2 and T3, but inhibition of NO synthase and blockade of the Na(+)/H(+) pump by 5-(N-ethyl-N-isopropyl)amiloride prevented only that elicited by T3; and CB-DMB, bisindolylmaleimide, and LY-294002 (inhibitors of the Na(+)/Ca(2+) exchanger, PKC, and phosphatidylinositol 3-kinase, respectively) failed to modify the T2- and T3-induced effects. Collectively, the present results suggest that T2 and T3 exert short-term nongenomic effects on intracellular calcium and NO by modulating plasma membrane and mitochondrial pathways that differ between these iodothyronines.  相似文献   

17.
We tested the hypothesis that the negative functional effects of cyclic GMP on cardiac myocytes were mediated through phospholamban (PLB) and activation of sarcoplasmic reticulum Ca(2+)-ATPase. Using ventricular myocytes from wild type (WT, n=10) and PLB knockout (PLB-KO, n=10) mouse hearts, functional changes were measured using a video edge detector at baseline and after 10(-6), 10(-5)M 8-bromo-cyclic GMP (cGMP), 10(-8), 10(-7)M C-type natriuretic peptide (CNP), or 10(-6), 10(-5)M S-nitroso-N-acetyl-penicillamine (SNAP, nitric oxide donor). Changes in cytosolic Ca(2+) concentration were assessed in fura 2-loaded WT and PLB-KO myocytes. Cyclic GMP dependent phosphorylation analysis was also performed in WT and PLB-KO myocytes. 8-bromo-cGMP 10(-5)M caused a significant decrease in %shortening (3.6+/-0.2% to 2.3+/-0.1%) in WT, but little change in PLB-KO myocytes (3.4+/-0.1% to 3.2+/-0.2%). Similarly, CNP and SNAP reduced %shortening of WT, but not PLB-KO myocyte. Changes in other contractile parameters such as maximum rate of shortening and relaxation were consistent with the changes in % shortening. Intracellular Ca(2+) transients changed similarly to cell contractility in WT and PLB-KO myocytes treated with cGMP and CNP; i.e. Ca(2+) transients decreased with cGMP or CNP in WT myocytes, but were unchanged in PLB-KO myocytes. cGMP dependent phosphorylation analysis showed that some proteins were phosphorylated by cGMP to a lesser extent in PLB-KO compared with WT myocytes, suggesting impaired cGMP-kinase function in PLB-KO cardiac myocytes. These results indicated that cGMP-induced reductions in cardiac myocyte function were at least partially mediated through the action of phospholamban.  相似文献   

18.
To examine the role of myocardial interleukin-6 (IL-6) in myocardial inflammation and dysfunction after burn complicated by sepsis, we performed 40% total body surface area contact burn followed by late (7 days) Streptococcus pneumoniae pneumonia sepsis in wild-type (WT) mice, IL-6 knockout (IL-6 KO) mice, and transgenic mice overexpressing IL-6 in the myocardium (TG). Twenty-four hours after sepsis was induced, isolated cardiomyocytes were harvested and cultured in vitro, and supernatant concentrations of IL-6 and tumor necrosis factor (TNF)-alpha were measured. Cardiomyocyte intracellular calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) concentrations were also determined. Separate mice in each group underwent in vivo global hemodynamic and cardiac function assessment by cannulation of the carotid artery and insertion of a left ventricular pressure volume conductance catheter. Hearts from these mice were collected for histopathological assessment of inflammatory response, fibrosis, and apoptosis. In the WT group, there was an increase in cardiomyocyte TNF-alpha, [Ca(2+)](i), and [Na(+)](i) after burn plus sepsis, along with cardiac contractile dysfunction, inflammation, and apoptosis. These changes were attenuated in the IL-6 KO group but accentuated in the TG group. We conclude myocardial IL-6 mediates cardiac inflammation and contractile dysfunction after burn plus sepsis.  相似文献   

19.
低浓度双氢哇巴因对豚鼠心室肌细胞内游离钙浓度的影响   总被引:6,自引:1,他引:5  
Yin JX  Wang YL  Li Q  Shang ZL  Su SW 《生理学报》2002,54(5):385-389
用激光共聚焦显微镜检查研究低浓度双氢哇巴因(DHO)对豚鼠心室肌细胞内钙浓度([Ca^2 ]i)的影响。DHO 1fmol/L-1 mmol/L可增加心室肌细胞的[Ca^2 ]i,尤其以10pmol/L DHO为显著,Nisoldipine,EGTA或TTX可分别部分抑制10pmol/L DHO的作用,去除胞外K^ 和Na^ 后,上述作用仍存在,以上结果表明,低浓度DHO中通过激活钙通道和TTX敏感的钠通道,或许还可直接促进胞内钙释放来增加[Ca^2 ]i,并有不依赖Na^ /K^ 泵而升高[Ca^2 ]i的作用。  相似文献   

20.
Because activation of the coagulation cascade and the generation of thrombin coexist with sepsis and the release of tumor necrosis factor (TNF)-alpha, we determined the effects of TNF-alpha on the mechanism of thrombin-induced increase in endothelial permeability. We assessed Ca(2+) signaling in human umbilical vein endothelial cells. In human umbilical vein endothelial cells exposed to TNF-alpha for 2 h, thrombin produced a rise in the intracellular Ca(2+) concentration ([Ca(2+)](i)) lasting up to 10 min. In contrast, thrombin alone produced a rise in [Ca(2+)](i) lasting for 3 min, whereas TNF-alpha alone had no effect on [Ca(2+)](i.) Thrombin-induced inositol 1,4,5-trisphosphate generation was not different between control and TNF-alpha-exposed cells. In the absence of extracellular Ca(2+), thrombin produced similar increases in [Ca(2+)](i) in both control and TNF-alpha-exposed cells. In TNF-alpha-exposed cells, the thrombin-induced Ca(2+) influx after intracellular Ca(2+) store depletion was significantly greater and prolonged compared with control cells. Increased Ca(2+) entry was associated with an approximately fourfold increase in Src activity and was sensitive to the Src kinase inhibitor PP1. After TNF-alpha exposure, thrombin caused increased tyrosine phosphorylation of junctional proteins and actin stress fiber formation as well as augmented endothelial permeability. These results suggest that TNF-alpha stimulation of endothelial cells results in amplification of the thrombin-induced Ca(2+) influx by an Src-dependent mechanism, thereby promoting loss of endothelial barrier function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号