首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Antiplatelet agents such as sarpogrelate (SAR), a 5-hydroxytryptamine antagonist, and cilostazol (CIL), a phosphodiesterase-III inhibitor, are used in the management of peripheral vascular disease. In this study, we tested the hypothesis that both SAR and CIL prevent cardiac remodeling and improve cardiac function in congestive heart failure (CHF) due to myocardial infarction (MI). Post-MI rats (3 weeks after the occlusion of coronary artery) received either vehicle (MI+V, n = 36), SAR (MI+SAR; 5 mg xc kg(-1) x day(-1), n = 35) or CIL (MI+CIL; 5 mg x kg(-1) x day(-1), n = 34) from day 21 to day 56. Sham-operated rats (n = 29) served as controls. Electrocardiographic, echocardiographic, and hemodynamic parameters were measured on day 56. Treatment of infarcted animals with SAR or CIL significantly improved the left ventricular (LV) dimensions, LV fractional shortening, cardiac output, stroke volume, mean arterial pressure, LV diastolic function, and LV systolic pressure, as well as rates of LV pressure development and pressure decay. Although cardiac hypertrophy was reduced, both SAR and CIL had no effect on infarct size or MI-associated QTc prolongation. However, SAR decreased whereas CIL increased the incidence of ventricular arrhythmias and the mean number of episodes in infarcted animals. Mortality during the treatment period was decreased by 17% with SAR and increased by 10% with CIL, but these changes were not significant statistically. The data in this study suggest that both SAR and CIL prevent cardiac remodeling and improve cardiac function in MI-induced CHF; however, CIL unlike SAR increased the incidence of arrhythmias and adversely affected patient mortality.  相似文献   

2.
Growth hormone (GH)-releasing peptides (GHRP), a class of synthetic peptidyl GH secretagogues, have been reported to exert a cardioprotective effect on cardiac ischemia. However, whether GHRP have a beneficial effect on chronic heart failure (CHF) is unclear, and the present work aims to clarify this issue. At 9 wk after pressure-overload CHF was created by abdominal aortic banding in rats, one of four variants of GHRP (GHRP-1, -2, and -6 and hexarelin, 100 mug/kg) or saline was injected subcutaneously twice a day for 3 wk. Echocardiography and cardiac catheterization were performed to monitor cardiac function and obtain blood samples for hormone assay. GHRP treatment significantly improved left ventricular (LV) function and remodeling in CHF rats, as indicated by increased LV ejection fraction, LV end-systolic pressure, and diastolic posterior wall thickness and decreased LV end-diastolic pressure and LV end-diastolic dimension. GHRP also significantly alleviated development of cardiac cachexia, as shown by increases in body weight and tibial length in CHF rats. Plasma CA, renin, ANG II, aldosterone, endothelin-1, and atrial natriuretic peptide were significantly elevated in CHF rats but were significantly decreased in GHRP-treated CHF rats. GHRP suppressed cardiomyocyte apoptosis and increased cardiac GH secretagogue receptor mRNA expression in CHF rats. GHRP also decreased myocardial creatine kinase release in hypophysectomized rats subjected to acute myocardial ischemia. We conclude that chronic administration of GHRP alleviates LV dysfunction, pathological remodeling, and cardiac cachexia in CHF rats, at least in part by suppressing stress-induced neurohormonal activations and cardiomyocyte apoptosis.  相似文献   

3.
Several studies have demonstrated that NF-kappaB is substantially involved in the progression of cardiac remodeling; however, it remains uncertain whether the continuous inhibition of NF-kappaB is effective for the prevention of myocardial remodeling. Myocardial infarction (MI) was produced by ligation of the left anterior coronary artery of rats. IMD-0354 (10 mg/kg per day), a novel phosphorylation inhibitor of IkappaB that acts via inhibition of IKK-beta, was injected intraperitoneally starting 24 h after induction of MI for 28 days. After 28 days, the IMD-0354-treated group showed significantly improved survival rate compared with that of the vehicle-treated group (P < 0.05). Although infarct size was similar in both groups, improved left ventricular (LV) remodeling and diastolic dysfunction, as indicated by smaller LV cavity (LV end-diastolic area: vehicle, 74.13 +/- 3.57 mm(2); IMD-0354, 55.00 +/- 3.73 mm(2); P < 0.05), smaller peak velocity of early-to-late filling wave (E/A) ratio (vehicle, 3.87 +/- 0.26; IMD-0354, 2.61 +/- 0.24; P < 0.05), and lower plasma brain natriuretic peptide level (vehicle, 167.63 +/- 14.87 pg/ml; IMD-0354, 110.75 +/- 6.41 pg/ml; P < 0.05), were observed in the IMD-0354-treated group. Moreover, fibrosis, accumulation of macrophages, and expression of several factors (transforming growth factor-beta1, monocyte chemoattractant protein-1, matrix metalloproteinase-9 and -2) in the noninfarcted myocardium was remarkably inhibited by IMD-0354. In conclusion, inhibition of NF-kappaB activation may reduce the proinflammatory reactions and modulate the extracellular matrix and provide an effective approach to prevent adverse cardiac remodeling after MI.  相似文献   

4.
Molecular signaling pathways that regulate peripartum cardiac remodeling are not well understood. Our objectives were to study the role of mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), and endothelial nitric oxide synthase (eNOS) in mediating pregnancy and postpartum (PP) cardiac remodeling. Methods: Adult female Sprague-Dawley rats were divided into nonpregnant (n = 5), 18 days pregnant (n = 5), 0 days PP (n = 7), and 14 days PP (n = 8). Rats underwent echocardiography under sedation to measure left ventricle (LV) size and function, and Western blots were performed to measure myocardial protein expression of MAPKs (p38, JNK, ERK), Akt, and eNOS. Results: 1) During pregnancy, there was an increase in LV mass (0.62 +/- 0.03 to 1.1 +/- 0.04 g, P < 0.001), mass/volume ratio (0.7 +/- 0.02 to 1.28 +/- 0.02 g/ml, P < 0.0001), and ejection fraction (EF) (64 +/- 3 to 74 +/- 2%). Whereas LV mass and mass/volume ratio returned to prepregnancy values in the PP period, EF remained below normal range (53 +/- 3%, P < 0.05). 2) The expression of anti-hypertrophic factors (p38, JNK, Akt) decreased during pregnancy and normalized PP, except JNK, which increased to higher than normal levels. eNOS also increased to higher than baseline levels PP. 3) Activation of p38 and JNK was directly correlated with lower LV mass/volume ratio (r = -0.81 and -0.71, respectively; P < 0.05). Conclusion: Pregnancy is associated with physiological cardiac hypertrophy. There is rapid reversal of hypertrophy in the PP period while recovery of cardiac function is delayed, possibly related to PP upregulation of JNK. A dysregulation of MAPK signaling may be an important determinant of PP cardiac dysfunction.  相似文献   

5.
Spontaneously hypertensive rats (SHR) were separated into two groups (n = 6 per group) and, since 5 months old, received alpha-tocopherol (alpha-tocopherol acetate120 IU) or vehicle by daily gavage for 2 weeks. Blood viscosity, blood pressure (BP) and myocardial remodeling were analyzed. The SHRs treated with alpha-tocopherol showed a significant reduction of BP and a major reduction of blood viscosity in comparison with the control SHRs. The cardiac hypertrophy indices showed some differences when the two SHR groups were compared, the LV mass index was not different between the groups; however, the cardiomyocyte size was more than 20% smaller in SHRs treated with alpha-tocopherol than in control SHRs (P < .05). The intramyocardial vessels distribution was more than 45% greater in alpha-tocopherol-treated SHRs than in control rats, significantly improving the vessels-to-myocytes ratio in treated SHRs than in control SHRs (P < .05). In conclusion, present findings strongly suggest a beneficial effect of alpha-tocopherol supplementation to genetically hypertensive rats. This was observed by a reduction of both blood viscosity and BP, and a consequent cardiomyocyte hypertrophy in treated SHRs; an improvement of vessels-to-myocytes ratio in these rats was also observed.  相似文献   

6.
目的:慢性心力衰竭(CHF)患者终末期阶段常发生左室(LV)重塑和心脏性恶病质,有研究称Ghrelin可能对CHFLV功能和能量代谢产生保护作用。本文旨在探讨Ghrelin对CHF大鼠LV功能紊乱和心源性恶病质的作用。方法:建立左冠状动脉结扎术和假手术组,手术后4周,给予大鼠Ghrelin或生理盐水3周。用超声心动图和心脏导管术监测结果。结果:与给予安慰剂组相比,用Ghrelin治疗的CHF和假手术组,血浆GH和胰岛素样生长因子1明显升高(t=1.49,t=0.71,P0.05)。与Sham-Placebo组相比,CHF-Placebo组大鼠体重明显减轻(t=2.18,P0.05)。然而与CHF-Placebo组相比,CHF-Ghrelin组大鼠,体重(t=3.89,P0.05),心输出量(t=3.28,P0.05),LV dP/dtmax(t=3.90,P0.05)明显增加。Ghrelin增加了CHF大鼠心脏舒张压,抑制LV扩大,增加LV缩短分数。结论:长期注射Ghrelin可改善CHF大鼠LV功能紊乱,减缓LV重构和心脏性恶病质的发展,有望为CHF的治疗提供新的途径和方法。  相似文献   

7.
Smith RS  Agata J  Xia CF  Chao L  Chao J 《Life sciences》2005,76(21):2457-2471
Nitric oxide (NO) has been shown to play a key role in the regulation of cardiac hypertrophy and fibrosis in response to myocardial ischemia in part by antagonizing the action of angiotensin II (Ang II). In this study, we investigated the potential protective role of human endothelial nitric oxide synthase (eNOS) in left ventricular (LV) remodeling after myocardial infarction (MI) by a somatic gene transfer approach. Male Wistar rats underwent coronary artery ligation to induce MI. One week after surgery, adenovirus encoding the human eNOS or luciferase gene under the control of the CMV promoter/enhancer was injected into rats via the tail vein, and animals were sacrificed at 1 and 5 weeks after gene transfer. Successful gene transfer was evaluated based on increased levels of NO and cGMP in the heart, measured at one week after eNOS gene delivery. Six weeks after MI, the LV end-diastolic pressure, heart weight, LV axis length and cardiomyocyte size were markedly increased compared to the Sham group, while eNOS gene delivery significantly reduced these parameters. Rats receiving control virus developed considerably more fibrotic lesions identified by Sirius Red staining and collagen I immunostaining compared to Sham rats, and eNOS gene delivery significantly reduced collagen accumulation. eNOS gene transfer also reduced TUNEL-positive apoptotic cells. The cardioprotective effect of NO was accompanied by reduced NADH and NADPH oxidase activities and superoxide formation, TGF-beta1 and p27 levels, JNK activation, NF-kappa B nuclear translocation, and caspase-3 activity. This study shows that NO may play an important role in attenuating cardiac remodeling and apoptosis after myocardial infarction via suppression of oxidative stress-mediated signaling pathways.  相似文献   

8.
The attenuation of adverse myocardial remodeling and pathological left ventricular (LV) hypertrophy is one of the hallmarks for improving the prognosis after myocardial infarction (MI). The protein kinase Akt plays a central role in regulating cardiac hypertrophy, but the in vivo effects of chronic pharmacological inhibition of Akt are unknown. We investigated the effect of chronic Akt blockade with deguelin on the development of pathological [MI and aortic banding (AB)] and physiological (controlled treadmill running) hypertrophy. Primary cardiomyocyte cultures were incubated with 10 μmol deguelin for 48 h, and Wistar rats were treated orally with deguelin (4.0 mg·kg(-1)·day(-1)) for 4 wk starting 1 day after the induction of MI or AB. Exercise-trained animals received deguelin for 4 wk during the training period. In vitro, we observed reduced phosphorylation of Akt and glycogen synthase kinase (GSK)-3β after an incubation with deguelin, whereas MAPK signaling was not significantly affected. In vivo, treatment with deguelin led to attenuated phosphorylation of Akt and GSK-3β 4 wk after MI. These animals showed significantly increased heart weights and impaired LV function with increased end-diastolic diameters (12.0 ± 0.3 vs. 11.1 ± 0.3 mm, P < 0.05), end-diastolic volumes (439 ± 8 vs. 388 ± 18 μl, P < 0.05), and cardiomyocyte sizes (+20%, P < 0.05) compared with MI animals receiving vehicle treatment. Furthermore, activation of Ca(2+)/calmodulin-dependent kinase II in deguelin-treated MI animals was increased compared with the vehicle-treated group. Four wk after AB, we observed an augmentation of pathological hypertrophy in the deguelin-treated group with a significant increase in heart weights and cardiomyocyte sizes (>20%, P < 0.05). In contrast, the development of physiological hypertrophy was inhibited by deguelin treatment in exercise-trained animals. In conclusion, chronic Akt blockade with deguelin aggravates adverse myocardial remodeling and antagonizes physiological hypertrophy.  相似文献   

9.
To elucidate the molecular mechanism underlying estrogen-mediated cardioprotection in left ventricular (LV) hypertrophy and remodeling, we analyzed myocardial hypertrophy as well as cardiac function and hypertrophy-related protein expression in ovariectomized, aortic-banded rats. Wistar rats subjected to bilateral ovariectomy (OVX) were further treated with abdominal aortic stenosis. Effects on LV morphology and function were assessed using echocardiography, and expression of protein levels was determined by Western blot analysis. The heart-to-body weight ratio was most significantly increased in the OVX-pressure overload (PO) group compared with the OVX group and in the PO group compared with sham. The LV weight-to-body weight ratio was also significantly increased in the OVX-PO group compared with the OVX group and in the PO group compared with sham. The most significant increases in LV end diastolic pressure, LV developed pressure, and +/-dp/dt(max) were observed in the OVX-PO group compared with the OVX group and represent compensatory phenotypes against hypertrophy. Both endothelial nitric oxide (eNOS) synthase expression and activity was markedly reduced in the OVX-PO group, and protein kinase B (Akt) activity was largely attenuated. Marked breakdown of dystrophin was also seen in hearts of OVX-PO groups. Finally, significantly increased mortality was observed in the OVX-PO group following chronic isoproterenol administration. Our results demonstrate that rats subjected to ovariectomy are unable to compensate for hypertrophy, showed deteriorated heart function, and demonstrated increased mortality. Simultaneous impairment of eNOS and Akt activities and reduced dystrophin by ovariectomy likely contribute to cardiac decompensation during PO-induced hypertrophy in ovariectomized rats.  相似文献   

10.
A marked increase in plasma TNF-alpha has been described in patients with chronic heart failure (CHF). Nevertheless, little is known about the direct role of this cytokine early after myocardial infarction (MI) and its possible effects on the subsequent development of CHF. Wistar rats were subjected to permanent in vivo coronary artery ligation. At 5, 7, and 9 days after MI, cardiac function, passive compliance of the left ventricle (LV), and cardiac geometry were evaluated. The same model was used to perform pharmacological studies 7 days and 10 wk after MI in rats treated with monomeric recombinant human soluble TNF-alpha receptor type II (sTNF-RII, 40 microg/kg iv) or a placebo on day 3. Maximal alterations of cardiac function and geometry occurred 7 days after MI, which correlated chronologically with a peak of cardiac and serum TNF-alpha, as shown by immunohistochemistry and ELISA, respectively. sTNF-RII improved LV end-diastolic pressure under basal conditions and after volume overload 7 days and 10 wk after MI. Moreover, a significant leftward shift of the pressure-volume curve in the sTNF-RII-treated group 7 days after MI indicated a preservation of LV volume. Infarct expansion index was also significantly improved by sTNF-RII 7 days after MI (P < 0.01). Nevertheless, 10 wk after MI, geometric indexes and passive pressure-volume curves were not significantly improved by the treatment. In conclusion, TNF-alpha plays a major role in cardiac alterations 7 days after MI in rats and contributes to hemodynamic derangement, but not to cardiac remodeling, in subsequent CHF.  相似文献   

11.
Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R‐operated rats were divided into 4 groups: vehicle, apoptosis (Z‐vad), ferroptosis (Fer‐1) and necroptosis (Nec‐1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z‐vad (low and medium doses) or Fer‐1 (medium and high doses). Fer‐1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec‐1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.  相似文献   

12.
We previously reported an approximately 50% incidence of rats with symptoms of congestive heart failure (CHF) at 8 wk postinfrarenal aorto-caval fistula. However, it was not clear whether compensatory ventricular remodeling could continue beyond 8 wk or whether the remaining animals would have developed CHF or died. Therefore, the intent of this study was to complete the characterization of this model of sustained volume overload by determining the morbidity and mortality and the temporal response of left ventricular (LV) remodeling and function beyond 8 wk. The findings demonstrate an upper limit to LV hypertrophy and substantial increases in LV volume and compliance, matrix metalloproteinase activity, and collagen volume fraction associated with the development of CHF. There was an 80% incidence of morbidity and mortality following 21 wk of chronic volume overload. These findings indicate that the development of CHF is triggered by marked ventricular dilatation and increased compliance occurring once the myocardial hypertrophic response is exhausted.  相似文献   

13.
Myocardial infarction (MI) results in left ventricular remodeling (e.g., ventricular hypertrophy, dilatation, and fibrosis). Fibrosis contributes to increased myocardial stiffening, impaired ventricular filling and function, and reduced cardiac output. Adenylyl cyclase (AC) expression and activity are reduced in animal models of heart failure. Stimulation of AC can inhibit extracellular matrix production in isolated cardiac fibroblasts; however, a role for reduced AC expression and activity in fibrosis associated with cardiac remodeling after chronic MI has never been determined. We tested the hypothesis that AC expression and activity are reduced in cardiac fibroblasts after chronic (18 wk) MI. Rats underwent coronary artery ligation or sham surgery (control), and echocardiography was used to assess left ventricular remodeling 1, 3, 5, 7, 10, 12, and 18 wk after surgery. Cardiac fibroblasts were isolated from the noninfarcted myocardium and compared for differences in AC activity and collagen synthesis. End-diastolic dimension was increased [control: 0.76 +/- 0.02 cm and MI: 1.0 +/- 0.02 cm (means +/- SE), P < 0.001] and fractional shortening was decreased (control: 44 +/- 2% and MI: 17 +/- 2%, P < 0.001) in MI compared with control rats. Basal and forskolin-stimulated cAMP production were decreased by 90% and 93%, respectively, and AC5/6 expression was decreased 39% in fibroblasts isolated from MI rats compared with sham controls. Serum-stimulated collagen production was increased twofold and forskolin-mediated inhibition of collagen synthesis was reduced in fibroblasts from MI rats compared with controls. Our data demonstrate that AC expression and activity are reduced and collagen production is increased in cardiac fibroblasts of rats after MI.  相似文献   

14.
Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.  相似文献   

15.
Gender differences in the prevalence of cardiovascular disease have been observed both clinically and experimentally. These cardioprotective effects have frequently been attributed to female hormones, however, the underlying mechanisms responsible for this cardioprotection are still poorly understood. Accordingly, this study sought to determine the contribution of ovarian hormones to the prevention of adverse ventricular remodeling and congestive heart failure in chronic volume overload (i.e. aortocaval fistula in intact or ovariectomized female rats). Ovariectomized rats developed more extensive cardiac remodeling than intact females at 21 weeks post-fistula, characterized by significantly greater left ventricular (LV) hypertrophy (167 vs. 86%, respectively, p < 0.05) and a substantial increase in LV dilatation (71%, p < 0.05) relative to control. In contrast to the eccentric hypertrophy in ovariectomized females post-fistula, the hypertrophic response in the intact female hearts was essentially concentric. While neither fistula group suffered significant mortality, there was a marked increase in the lung weight of ovariectomized rats (87%, p < 0.05) consistent with the development of pulmonary edema. Overall, the extent of myocardial remodeling and decrease in LV function in the ovariectomized females was comparable to those changes reported for males with symptomatic heart failure, while intact females maintained chronic compensated ventricular function similar to that of controls. The marked ventricular dilatation and symptoms of congestive heart failure seen at 21 weeks post-fistula in the ovariectomized females clearly demonstrate the influence of circulating ovarian hormones on the pattern of myocardial remodeling resulting from a chronic volume overload.  相似文献   

16.
17.
Tetracycline is a powerful tool for controlling the expression of specific transgenes (TGs) in various tissues, including heart. In these mouse systems, TG expression is repressed/enhanced by adding doxycycline (Dox) to the diet. However, Dox has been shown to attenuate matrix metalloproteinase (MMP) expression and activity in various tissues, and MMP inactivation mitigates left ventricular (LV) remodeling in animal models of heart failure. Therefore, we examined the influence of Dox on LV remodeling and MMP expression in mice after transverse aortic constriction (TAC). One month after TAC, cardiac hypertrophy (99% vs. 67%) and the proportion of mice exhibiting congestive heart failure (CHF, 74% vs. 32%) were higher in the TAC + Dox group than in the TAC group (P < 0.05). These differences were no longer seen 2 mo after TAC, although LV was more severely dilated in TAC + Dox mice than in TAC mice (P < 0.05). One month after TAC, the increase in brain natriuretic peptide and beta-myosin heavy chain mRNA levels was 1.6 and 1.7 times higher, respectively, in TAC + Dox mice than in TAC mice (P < 0.01). MMP-2 gelatin zymographic activity increased 1.9- and 2.4-fold in TAC and TAC + Dox mice, respectively (P < 0.01 and P < 0.05 relative to respective sham-operated animals), but the difference between TAC + Dox and TAC mice did not reach statistical significance. Dox did not significantly alter TAC-associated perivascular and interstitial myocardial fibrosis. These findings demonstrate that Dox accelerates the onset of cardiac hypertrophy and the progression to CHF following TAC in mice. Accordingly, care should be taken when designing and interpreting studies based on TG mouse models of LV hypertrophy using the tetracycline-regulated (tet)-on/tet-off system.  相似文献   

18.
目的:探讨miRNAs(miR199a-5P、miR206、miR133a-3P、miR499-5P)在异丙肾上腺素(ISO)诱导大鼠心肌肥厚模型组中的表达变化;并运用生物信息学方法分析相关的主要信号通路及分子机制。方法:将16只SD雄性大鼠随机分为2组:对照组和ISO模型组,模型组给予ISO(1 mg/kg)诱导心肌肥厚模型,对照组给予等量生理盐水,均采用背部皮下多点注射。连续给药10 d后采用超声心动图测量舒张期室间隔厚度(IVSd)、舒张期左室后壁厚度(LVPWd)、左室舒张末期内径(LVDd)及心脏收缩功能(EF%);称量心脏重量(HW)、大鼠体重(BW),并计算心脏/体重比(HW/BW);心肌组织HE染色,Image J分析软件测量心肌细胞表面积;RT-qPCR检测大鼠心肌组织中4种miRNAs的表达情况。运用Targetscan、miRDB、miRwalk 数据库预测大鼠4种miRNAs可能的靶基因,FunRich软件分析预测靶基因相关的信号通路。结果:与正常组相比,模型组IVSd、LVPWd增厚,LV增大,EF%明显降低;HW、HW/BW增加;模型组心肌细胞体积明显增大,排列紊乱,细胞表面积增加;模型组miR199a-5P、miR206表达上调(P<0.05);miR133a-3P、miR499-5P表达下调(P<0.05)。应用生物信息学预测4种miRNAs的靶基因可能参与心肌肥厚相关的信号通路主要有:VEGF/VEGFR信号通路、ErbB受体信号通路等。结论:ISO诱导心肌肥厚导致miRNAs表达的改变,生物信息学预测4种miRNAs参与心肌肥厚相关的靶基因及其主要信号通路,这些研究为心肌肥厚的调控机制及其防治措施提供了新思路。  相似文献   

19.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been shown to prevent or reverse hypertrophy of the LV in several models of left ventricular hypertrophy. The aim of the present study was to determine whether treatment with simvastatin can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) remodeling in NG-nitro-L-arginine methyl ester(L-NAME)-induced hypertension. Four groups of rats were investigated: control, simvastatin (10 mg/kg), L-NAME (40 mg/kg) and L-NAME + simvastatin (in corresponding doses). Animals were sacrificed and studied after 6 weeks of treatment. The decrease of NO-synthase activity in the LV, kidney and brain was associated with hypertension, LV hypertrophy and fibrosis development and remodeling of the aorta in the L-NAME group. Simvastatin attenuated the inhibition of NO-synthase activity in kidney and brain, partly prevented hypertension development and reduced the concentration of coenzyme Q in the LV. Nevertheless, myocardial hypertrophy, fibrosis and enhancement of DNA concentration in the LV, and remodeling of the aorta were not prevented by simultaneous simvastatin treatment in the L-NAME treated animals.We conclude that the HMG-CoA reductase inhibitor simvastatin improved nitric oxide production and partially prevented hypertension development, without preventing remodeling of the left ventricle and aorta in NO-deficient hypertension.  相似文献   

20.
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号