首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete ganglion blockade alters dynamic cerebral autoregulation, suggesting links between systemic autonomic traffic and regulation of cerebral blood flow velocity. We tested the hypothesis that acute head-down tilt, a physiological maneuver that decreases systemic sympathetic activity, would similarly disrupt normal dynamic cerebral autoregulation. We studied 10 healthy young subjects (5 men and 5 women; age 21 +/- 0.88 yr, height 169 +/- 3.1 cm, and weight 76 +/- 6.1 kg). ECG, beat-by-beat arterial pressure, respiratory rate, end-tidal CO2 concentration, and middle cerebral blood flow velocity were recorded continuously while subjects breathed to a metronome. We recorded data during 5-min periods and averaged responses from three Valsalva maneuvers with subjects in both the supine and -10 degrees head-down tilt positions (randomized). Controlled-breathing data were analyzed in the frequency domain with power spectral analysis. The magnitude of input-output relations were determined with cross-spectral techniques. Head-down tilt significantly reduced Valsalva phase IV systolic pressure overshoot from 36 +/- 4.0 (supine position) to 25 +/- 4.0 mmHg (head down) (P = 0.03). Systolic arterial pressure spectral power at the low frequency decreased from 5.7 +/- 1.6 (supine) to 4.4 +/- 1.6 mmHg2 (head down) (P = 0.02), and mean arterial pressure spectral power at the low frequency decreased from 3.3 +/- 0.79 (supine) to 2.0 +/- 0.38 mmHg2 (head down) (P = 0.05). Head-down tilt did not affect cerebral blood flow velocity or the transfer function magnitude and phase angle between arterial pressure and cerebral blood flow velocity. Our results show that in healthy humans, mild physiological manipulation of autonomic activity with acute head-down tilt has no effect on the ability of the cerebral vasculature to regulate flow velocity.  相似文献   

2.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   

3.
Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco(2) were continuously recorded in 14 right-handed healthy subjects (21-43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 +/- 0.16 vs. 0.26 +/- 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 +/- 0.23 vs. 0.29 +/- 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 +/- 0.37 vs. 0.46 +/- 0.32 cm.s(-1).mmHg(-1), P < 0.05) and left (0.61 +/- 0.29 vs. 0.45 +/- 0.24 cm.s(-1).mmHg(-1), P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 +/- 0.31 vs. 0.39 +/- 0.15 cm.s(-1).mmHg(-1), P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (-0.04 +/- 1.01 vs. 0.80 +/- 0.86 rad, P < 0.01) and left (0.11 +/- 0.81 vs. 0.57 +/- 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 +/- 0.87 vs. 0.64 +/- 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.  相似文献   

4.
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) while jugular venous oxygen saturation (Sv(O(2))) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 +/- 5 W (mean +/- SE) that was continued to exhaustion with a group average time of 26.8 +/- 5.8 min. Despite no significant change in MAP during exercise, MCA V(mean) decreased from 70.2 +/- 3.6 to 57.4 +/- 5.4 cm/s, Sv(O(2)) decreased from 68 +/- 1 to 58 +/- 2% at exhaustion, and both correlated to Pa(CO(2)) (5.5 +/- 0.2 to 3.9 +/- 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O(2) to [glucose + one-half lactate] from 5.6 to 3.8 (P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA V(mean) was increased (P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in Pa(CO(2)).  相似文献   

5.
Potassium channels   总被引:4,自引:0,他引:4  
MacKinnon R 《FEBS letters》2003,555(1):62-65
The atomic structures of K+ channels have added a new dimension to our understanding of K+ channel function. I will briefly review how structures have influenced our views on ion conduction, gating of the pore, and voltage sensing.  相似文献   

6.

Background

This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals.

Methods

We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound.

Results

A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts.

Conclusion

In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.
  相似文献   

7.
Complex continuous wavelet transforms are used to study the dynamics of instantaneous phase difference delta phi between the fluctuations of arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) in a middle cerebral artery. For healthy individuals, this phase difference changes slowly over time and has an almost uniform distribution for the very low-frequency (0.02-0.07 Hz) part of the spectrum. We quantify phase dynamics with the help of the synchronization index gamma = (sin delta phi)2 + (cos delta phi)2 that may vary between 0 (uniform distribution of phase differences, so the time series are statistically independent of one another) and 1 (phase locking of ABP and CBFV, so the former drives the latter). For healthy individuals, the group-averaged index gamma has two distinct peaks, one at 0.11 Hz [gamma = 0.59 +/- 0.09] and another at 0.33 Hz (gamma = 0.55 +/- 0.17). In the very low-frequency range (0.02-0.07 Hz), phase difference variability is an inherent property of an intact autoregulation system. Consequently, the average value of the synchronization parameter in this part of the spectrum is equal to 0.13 +/- 0.03. The phase difference variability sheds new light on the nature of cerebral hemodynamics, which so far has been predominantly characterized with the help of the high-pass filter model. In this intrinsically stationary approach, based on the transfer function formalism, the efficient autoregulation is associated with the positive phase shift between oscillations of CBFV and ABP. However, the method is applicable only in the part of the spectrum (0.1-0.3 Hz) where the coherence of these signals is high. We point out that synchrony analysis through the use of wavelet transforms is more general and allows us to study nonstationary aspects of cerebral hemodynamics in the very low-frequency range where the physiological significance of autoregulation is most strongly pronounced.  相似文献   

8.
The effects of physical activity on cerebral blood flow (CBF) and cerebral autoregulation (CA) have not yet been fully evaluated. There is controversy as to whether increasing heart rate (HR), blood pressure (BP), and sympathetic and metabolic activity with altered levels of CO2 might compromise CBF and CA. To evaluate these effects, we studied middle cerebral artery blood flow velocity (CBFV) and CA in 40 healthy young adults at rest and during increasing levels of physical exercise. We continuously monitored HR, BP, end-expiratory CO2, and CBFV with transcranial Doppler sonography at rest and during stepwise ergometric challenge at 50, 100, and 150 W. The modulation of BP and CBFV in the low-frequency (LF) range (0.04-0.14 Hz) was calculated with an autoregression algorithm. CA was evaluated by calculating the phase shift angle and gain between BP and CBFV oscillations in the LF range. The LF BP-CBFV gain was then normalized by conductance. Cerebrovascular resistance (CVR) was calculated as mean BP adjusted to brain level divided by mean CBFV. HR, BP, CO2, and CBFV increased significantly with exercise. Phase shift angle, absolute and normalized LF BP-CBFV gain, and CVR, however, remained stable. Stable phase shift, LF BP-CBFV gain, and CVR demonstrate that progressive physical exercise does not alter CA despite increasing HR, BP, and CO2. CA seems to compensate for the hemodynamic effects and increasing CO2 levels during exercise.  相似文献   

9.
By using the patch-clamp technique, stretch-activated ionic channels were found in the membrane of cleaving freshwater fish embryos at the early stages of embryogenesis (2-256 cells). The application of negative pressure to the pipette increased the frequency of activation and the duration of bursts. This type of channel has a preferential K+ selectivity. When bathed on both membrane surfaces with 140 mM KCl the channel conductance was 71 pS. The kinetic behaviour did not depend markedly on either membrane potential (in the range from -70 to +70 mV) or calcium concentration on the cytoplasmic side of the membrane. On continuous recording, the probability of the channel being open was found to change periodically over a 5- to 20-fold range for different cells. These variations correlated with changes in resting potential and membrane conductance during the cell cycle. These results suggest that the oscillation of resting potential within the cell cycle is associated with the operation of stretch-activated ion channels.  相似文献   

10.
Hepatitis delta virus ribozyme folds into a tightly packed tertiary structure. However, unlike other ribozymes, it does not appear to be able to follow alternative folding pathways. Molecular engineering of the hepatitis delta virus ribozyme led to the development of a ribozyme possessing an endoribonuclease activity that is under the control of a G-quadruplex structure (i.e., a G-quartzyme). This latter species represents an entirely new class of ribozyme. Mutants of this ribozyme were then generated in order to shed light on the modulation of the cleavage activity caused by the presence of the G-quadruplex structure. Kinetic characterization of the G-quartzyme was performed under various single turnover conditions. It was found to be active only in the presence of potassium cations that act as counter ions in the positioning of the four coplanar guanines that form the building block of the G-quadruplex structure. The G-quartzyme behaves as an allosteric ribozyme, with the potassium cations acting as positive effectors with a Hill coefficient of 2.9 +/- 0.2. The conformation transition caused by the presence of the potassium ions is supported by enzymatic and chemical probing of both the inactive (off) and active (on) structures. This study shows that it is possible to interfere with the tight structure of the hepatitis delta virus ribozyme by adding an unusual, stable structure. To our knowledge, the G-quartzyme is the sole ribozyme that exhibits a monovalent cation-dependent activity.  相似文献   

11.
To determine whether dynamiccerebral autoregulation is impaired during orthostatic stress, cerebralblood flow (CBF) velocity in the middle cerebral artery (transcranialDoppler) and mean arterial pressure (MAP; Finapres) were measuredcontinuously in 12 healthy subjects during ramped maximal lower bodynegative pressure (LBNP) to presyncope. Velocity andpressure were averaged over 6-min periods of stable data at rest andduring LBNP to examine steady-state cerebral hemodynamics. Beat-to-beatvariability of velocity and pressure were quantified by a "variationindex" (oscillatory amplitude/steady-state mean value) and by powerspectral analysis. The dynamic relationship between changes in pressureand velocity was evaluated by the estimates of transfer and coherencefunction. The results of the study were as follows.Steady-state MAP remained relatively constant during LBNP, whereas CBFvelocity decreased progressively by 6, 15, and 21% at 30,40, and 50 mmHg LBNP, respectively(P < 0.05 compared withbaseline). At the maximal level of LBNP (30 s beforepresyncope) MAP decreased by 9.4% in association with a prominentreduction in velocity by 24% (P < 0.05 compared with baseline). The variation index of pressure increasedsignificantly from 3.8 ± 0.3% at baseline to 4.5 ± 0.6% at50 mmHg LBNP in association with an increase in the variation index of velocity from 6.0 ± 0.6 to 8.4 ± 0.7%(P < 0.05). Consistently, the low-(0.07-0.20 Hz) and high-frequency (0.20-0.30 Hz) power ofvariations in pressure and velocity increased significantly at highlevels of LBNP (P < 0.05) inassociation with an increase in transfer function gain (24% at50 mmHg, P < 0.05). We conclude that the damping effects ofautoregulation on variations in CBF velocity are diminishedduring orthostatic stress in association with substantial falls insteady-state CBF velocity. We suggest that these changes may contributein part to the development of presyncope.

  相似文献   

12.
Dynamic cerebral autoregulation (CA) has been studied previously using spectral analysis of oscillations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). The dynamics of the CA can be modeled as a high-pass filter. The purpose of this study is to compare CA of blood pressure oscillations induced by gravitational loading to CA during resting conditions. We subjected twelve healthy subjects to repeated sinusoidal head-up (0 degrees - 60 degrees) tilts at several set frequencies (0.07 to 0.25 Hz) on a computer controlled tilt table while we recorded ABP (Finapres) and CBFV (transcranial Doppler ultrasound). We fitted the data sets to a high-pass filter model and computed an average time constant (T). Our results show similar phase leads of CBFV to ABPbrain in the rest recording and in sinusoidal tilting, in the studied frequency range. The transfer function gain of the resting spectra increased with increasing frequency, the gain of the tilting spectra did not. Fitting the phase responses of both data sets to a high pass filter model yielded similar time constants.  相似文献   

13.
Obstructive sleep apnea (OSA) increases the risk of stroke independent of known vascular and metabolic risk factors. Although patients with OSA have higher prevalence of hypertension and evidence of hypercoagulability, the mechanism of this increased risk is unknown. Obstructive apnea events are associated with surges in blood pressure, hypercapnia, and fluctuations in cerebral blood flow. These perturbations can adversely affect the cerebral circulation. We hypothesized that patients with OSA have impaired cerebral autoregulation, which may contribute to the increased risk of cerebral ischemia and stroke. We examined cerebral autoregulation in patients with and without OSA by measuring cerebral artery blood flow velocity (CBFV) by using transcranial Doppler ultrasound and arterial blood pressure using finger pulse photoplethysmography during orthostatic hypotension and recovery as well as during 5% CO(2) inhalation. Cerebral vascular conductance and reactivity were determined. Forty-eight subjects, 26 controls (age 41.0+/-2.3 yr) and 22 OSA (age 46.8+/-2.3 yr) free of cerebrovascular and active coronary artery disease participated in this study. OSA patients had a mean apnea-hypopnea index of 78.4+/-7.1 vs. 1.8+/-0.3 events/h in controls. The oxygen saturation during sleep was significantly lower in the OSA group (78+/-2%) vs. 91+/-1% in controls. The dynamic vascular analysis showed mean CBFV was significantly lower in OSA patients compared with controls (48+/-3 vs. 55+/-2 cm/s; P <0.05, respectively). The OSA group had a lower rate of recovery of cerebrovascular conductance for a given drop in blood pressure compared with controls (0.06+/-0.02 vs. 0.20+/-0.06 cm.s(-2).mmHg(-1); P <0.05). There was no difference in cerebrovascular vasodilatation in response to CO(2). The findings showed that patients with OSA have decreased CBFV at baseline and delayed cerebrovascular compensatory response to changes in blood pressure but not to CO(2). These perturbations may increase the risk of cerebral ischemia during obstructive apnea.  相似文献   

14.
Potassium channels in plant cells   总被引:1,自引:0,他引:1  
Dreyer I  Uozumi N 《The FEBS journal》2011,278(22):4293-4303
Potassium (K(+) ) is the most abundant inorganic cation in plant cells. Unlike animals, plants lack sodium/potassium exchangers. Instead, plant cells have developed unique transport systems for K(+) accumulation and release. An essential role in potassium uptake and efflux is played by potassium channels. Since the first molecular characterization of K(+) channels from Arabidopsis thaliana in 1992, a large number of studies on plant potassium channels have been conducted. Potassium channels are considered to be one of the best characterized class of membrane proteins in plants. Nevertheless, knowledge on plant potassium channels is still incomplete. This minireview focuses on recent developments in the research of potassium transport in plants with a strong focus on voltage-gated potassium channels.  相似文献   

15.
16.
Ion channels are effector proteins that mediate uterine excitability throughout gestation. This review will focus primarily on the role of potassium channels in regulating myometrial tone in pregnancy and labor contractions. During gestation, potassium channels maintain the uterus in a state of quiescence by contributing to the resting membrane potential and counteracting contractile stimuli. This review summarizes the current knowledge about the significance of the potassium channels in maintaining a normal gestational period and initiating labor contractions at term.  相似文献   

17.
Potassium channels along the nephron   总被引:2,自引:0,他引:2  
The K+ channels that are present in three different nephron segments, the Necturus proximal, Amphiuma early distal (diluting segment), and rabbit collecting tubule have been examined. Ca2+-sensitive K+ channels were present in the apical membranes of the cells lining all these segments. The channels were all voltage-sensitive and their open probability increased with membrane depolarization. Because of the ubiquitous distribution, it is suggested that this channel is responsible for K+ secretion by the nephron and that the same intracellular regulators act throughout the various segments. Basolateral K+ channels have been examined only in Necturus proximal tubules. This channel is apparently insensitive to Ca2+; the voltage dependence is exactly opposite to that of the apical K+ channels; that is, hyperpolarizing potentials caused an increase in open probability. These differences in regulatory factors permit the independent regulation of apical and basolateral membrane K+ permeabilities that must occur in renal cells.  相似文献   

18.
To characterize the assumed potassium channels in the plasma membrane of the green alga Eremosphaera viridis (Köhler et al. 1985), current-voltage (I/V)-curves under resting conditions and during an action-potential-like response (CAP) were constructed using voltage- and current-clamp techniques. Under resting conditions the I/V-curves of Eremosphaera showed a distinct upward bending when approaching zero mV, a nearly straight line in the medium part and a downward bending during strong hyperpolarization. Measurements in light and darkness frequently displayed a parallel shift of the I/V-curve in the middle part, indicating a current source which is slowed down by light-off. Using the voltage-clamp technique, N-shaped I/V-curves were sometimes observed. The potassium concentration outside influenced the downward-bending part of the I/V-curve whereas the tetraethylammonium cation, known to block potassium channels, reduced the upward-bending part in particular. A change in external pH, either to pH 7 or pH 3.1 from a standard pH 5.5, caused an increase in conductivity. Chemically induced action potentials were released in Eremosphaera under voltage-clamp conditions by light-off and there was both a current flow and an increase in conductivity during the CAP. Clamping the membrane potential at a value more negative than Nernst potential of potassium revealed an inward current, whereas clamping at a more-positive value revealed an outward current. The experiments demonstrate that there is no threshold potential in releasing a CAP. The I/V-curves performed under current clamp at the peak of CAP verify a previously found increased conductivity with hyper- or depolarization depending on the external potassium concentration. These experiments provide further evidence that in Eremosphaera potassium channels are involved in the CAP caused by a light-off signal. Additional experiments indicate that after light-off a transient acidification of the cytoplasm takes place in correlation with the CAP and the opening of potassium channels. A preliminary battery model is discussed to understand the role of potassium channels during a CAP in pH-regulation of the cytoplasm.Abbreviations AP classical action potential - CAP chemically induced action potential - Ek Nernst potential of potassium - I/V-curve current-voltage curve - TEA tetraethylammonium For part I see Planta 166, 490–499  相似文献   

19.
The dependence of the membrane potential of Eremosphaera viridis on different external concentrations of potassium, sodium, calcium, and protons was compared with the diffusion potential measured in the dark and in the presence of NaN3. In contrast to some other algae, the membrane potential in the light as well as in the dark seemed to be predominantly determined by the calculated diffusion potential and less by an electrogenic pump which, however, seemed to be involved at potassium concentrations >1 mol·m-3 and at higher pHos (>pH 6). Furthermore, some characteristics of an action-potential-like response (CAP) triggered by light-off, and independent of the membrane-potential threshold value, were determined. The CAP had a delay period of 5.4 s and needed 4.5 s for polarization to a plateau. On average, the plateau held for 8.8 s and the CAP lasted 37.7 s. The peak amplitudes of CAP (P AP) exactly followed the Nernst potential of potassium. Other cations like sodium, calcium and protons did not appreciably affect the peak amplitudes of CAP. From these and other results it can be assumed that the CAP is caused by a temporary opening of potassium channels in the plasma membrane of Eremosphaera (Köhler et al., 1983, Planta 159, 165–171). The release of a CAP by light-off has been partly explained by the participation of a transient increase of proton concentration in the cytoplasm. It was possible to trigger a CAP by external pH changes and by the addition of sodium acetate, thus supporting the hypothesis that a pH decrease in the cytoplasm may be one element of the signal transfer from the photosynthetic system to the potassium channels in the plasmalemma. Calcium also seemed to have an influence on triggering the CAP.Abbreviations and symbols CAP chemical-induced action-potential-like response - E D calculated diffusion potential (mV) - E D * measured diffusion potential (mV) - E K potassium equilibrium potential (mV) - E m membrane potential (mV) - P AP peak of action potential (mV) Part II will appear in Planta, Vol. 167, No. 1, 1986  相似文献   

20.
Potassium channels as tumour markers   总被引:7,自引:0,他引:7  
An increasing number of ion channels are being found to be causally involved in diseases, giving rise to the new field of "channelopathies". Cancer is no exception, and several ion channels have been linked to tumour progression. Among them is the potassium channel EAG (Ether-a-go-go). Over 75% of tumours have been tested positive using a monoclonal antibody specific for EAG, while inhibition of this channel decreased the proliferation of EAG expressing cells. The inhibition of EAG is accomplished using RNA interference, functional anti-EAG1 antibodies, or (unspecific) EAG channel blockers. Fluorescently labelled recombinant Fab fragments recognizing EAG allow the distribution of EAG to be visualized in an in vivo mouse tumour model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号