首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transport of the precursor to the 23-kDa protein of photosystemII was examined by incubation of the precursor with isolatedintact chloroplasts in the presence of ATP in darkness. An intermediary-sizedform was accumulated in the stroma at 0.1–1 mM ATP. Athigher concentrations of ATP (3.2–10 mM), the precursorwas imported into the thylakoid lumen and processed to the matureform. The precursor was not imported even as far as the stromain the absence of ATP. The intermediary-sized form that accumulatedat low concentrations of ATP was imported into the thylakoidlumen and processed to the mature form when chloroplasts weresubsequently incubated in the light. These observations indicatethat the accumulated intermediary-sized form was suitable forfurther translocation and that the intermediary-sized form isa transport intermediate that occurs under natural conditions.Import of the protein into the thylakoid lumen, which was observedat the higher concentrations of ATP, was inhibited by the additionof nigericin or carbonylcyanide m-chlorophenyl hydrazine. Theeffects of these ionophores suggests that the translocationof the protein across thylakoid membrane requires a proton gradientacross the membrane. The results together show that the proteinis imported from the cytosol into the thylakoid lumen in discretesteps: ATP-driven translocation across envelope membranes, stromalprocessing to the intermediate, translocation of the intermediateacross the thylakoid membrane and final processing to the matureprotein within the thylakoids. (Received June 3, 1992; Accepted December 17, 1992)  相似文献   

2.
A chimaeric gene was constructed encoding the pre-sequence of the 33 kDa oxygen-evolving complex protein from wheat (a thylakoid lumen protein) linked to ricin A chain. The fusion protein is efficiently imported by isolated pea chloroplasts and localised partly in the stroma, with the remainder bound to the stromal surface of the thylakoids. The imported protein is fully processed by both the stromal and thylakoidal processing peptidases, indicating that partial or complete translocation across the thylakoid membrane has taken place.  相似文献   

3.
The insertion of a protein into a lipid bilayer usually involves a short signal sequence and can occur either during or after translation. A light-harvesting chlorophyll a/b-binding protein (LHCP) is synthesized in the cytoplasm of plant cells as a precursor and is post-translationally imported into chloroplasts where it subsequently inserts into the thylakoid membrane. Only mature LHCP is required for insertion into the thylakoid. To define which sequences of the mature protein are necessary and sufficient for thylakoid integration, fusion and deletion proteins and proteins with internal rearrangements were synthesized and incubated with isolated thylakoids and stroma. No evidence is found for the existence of a short signal sequence within LHCP, and, with the exception of the amino terminus and a short lumenal loop, the entire mature protein with consecutively ordered alpha-helices is required for insertion into thylakoid membranes. The addition of positive charges into stromal but not lumenal segments permits the insertion of mutant LHCPs into isolated thylakoids. Replacement of the LHCP transit peptide with the transit peptide from plastocyanin has no effect on LHCP insertion and does not restore insertion of the lumenal charge addition mutants.  相似文献   

4.
Thylakoid membranes have a unique complement of proteins, most of which are nuclear encoded synthesized in the cytosol, imported into the stroma and translocated into thylakoid membranes by specific thylakoid translocases. Known thylakoid translocases contain core multi-spanning, membrane-integrated subunits that are also nuclear-encoded and imported into chloroplasts before being integrated into thylakoid membranes. Thylakoid translocases play a central role in determining the composition of thylakoids, yet the manner by which the core translocase subunits are integrated into the membrane is not known. We used biochemical and genetic approaches to investigate the integration of the core subunit of the chloroplast Tat translocase, cpTatC, into thylakoid membranes. In vitro import assays show that cpTatC correctly localizes to thylakoids if imported into intact chloroplasts, but that it does not integrate into isolated thylakoids. In vitro transit peptide processing and chimeric precursor import experiments suggest that cpTatC possesses a stroma-targeting transit peptide. Import time-course and chase assays confirmed that cpTatC targets to thylakoids via a stromal intermediate, suggesting that it might integrate through one of the known thylakoid translocation pathways. However, chemical inhibitors to the cpSecA-cpSecY and cpTat pathways did not impede cpTatC localization to thylakoids when used in import assays. Analysis of membranes isolated from Arabidopsis thaliana mutants lacking cpSecY or Alb3 showed that neither is necessary for cpTatC membrane integration or assembly into the cpTat receptor complex. These data suggest the existence of another translocase, possibly one dedicated to the integration of chloroplast translocases.  相似文献   

5.
Abscisic acid (ABA) is a key regulator of seed dormancy and plant responses to environmental challenges. ABA is synthesized via an oxidative cleavage of 9-cis epoxy-carotenoids, the first committed and key regulatory step in the ABA biosynthetic pathway. Vp14 of maize encodes an epoxy-carotenoid dioxygenase that is soluble when expressed in E. coli. An important goal has been to determine how the soluble VP14 protein is targeted to epoxy-carotenoid substrates that are located in the thylakoid and envelope membranes of chloroplasts and other plastids. Using an in vitro chloroplast import assay, we have shown that VP14 is imported into chloroplasts with cleavage of a short stroma-targeting domain. The mature VP14 exists in two forms, one which is soluble in stroma and the other bound to thylakoid membranes. Analysis of a series of truncated VP14 mutants mapped the membrane targeting signal to the 160 amino acid N-terminal sequence. A putative amphipathic alpha-helix within this region is essential, but not sufficient, for the membrane targeting. Either deletion of or insertion of helix breaking residues into this region abolished the membrane binding, whereas a chimeric protein carrying just the amphipathic region fused with bacterial glutathione S-transferase failed to associate with the thylakoid membrane. The membrane-bound VP14 was partially resistant to chaotropic washes such as 0.1 M Na2CO3 (pH 11.5) and 6 M urea. Unlabelled recombinant VP14 inhibited the tight binding of imported VP14, suggesting that VP14 is associated with specific components of the thylakoid membrane.  相似文献   

6.
In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is lefthanded in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.Key words: cyanobacteria, Cyanothece 51142, thylakoid membrane, electron tomography, chloroplast  相似文献   

7.
The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP) that is imported into chloroplasts and assembled into thylakoid membranes. Under appropriate conditions, either pLHCP or LHCP will integrate into isolated thylakoids. We have identified two situations that inhibit integration in this assay. Ionophores and uncouplers inhibited integration up to 70%. Carboxyl-terminal truncations of pLHCP also interfered with integration. A 22-residue truncation reduced integration to about 25% of control, whereas a 93 residue truncation completely abolished it. When pLHCP was imported into chloroplasts in the presence of uncouplers or when truncated forms of pLHCP were used, significant amounts of the imported proteins failed to insert into thylakoids and instead accumulated in the aqueous stroma. Accumulation of stromal LHCP occurred at uncoupler concentrations required to dissipate the trans-thylakoid proton electrochemical gradient and was enhanced at reduced levels of ATP. The latter effect may be a secondary consequence of a reduction in ATP-dependent degradation within the stroma. These results indicate that the stroma is an intermediate location in the LHCP assembly pathway and provide the first evidence for a soluble intermediate during biogenesis of a chloroplast membrane protein.  相似文献   

8.
We have investigated the three-dimensional (3D) architecture of the thylakoid membranes of Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and spinach (Spinacia oleracea) with a resolution of approximately 7 nm by electron tomography of high-pressure-frozen/freeze-substituted intact chloroplasts. Higher-plant thylakoids are differentiated into two interconnected and functionally distinct domains, the photosystem II/light-harvesting complex II-enriched stacked grana thylakoids and the photosystem I/ATP synthase-enriched, nonstacked stroma thylakoids. The grana thylakoids are organized in the form of cylindrical stacks and are connected to the stroma thylakoids via tubular junctions. Our data confirm that the stroma thylakoids are wound around the grana stacks in the form of multiple, right-handed helices at an angle of 20° to 25° as postulated by a helical thylakoid model. The junctional connections between the grana and stroma thylakoids all have a slit-like architecture, but their size varies tremendously from approximately 15 × 30 nm to approximately 15 × 435 nm, which is approximately 5 times larger than seen in chemically fixed thylakoids. The variable slit length results in less periodicity in grana/stroma thylakoid organization than proposed in the original helical model. The stroma thylakoids also exhibit considerable architectural variability, which is dependent, in part, on the number and the orientation of adjacent grana stacks to which they are connected. Whereas some stroma thylakoids form solid, sheet-like bridges between adjacent grana, others exhibit a branching geometry with small, more tubular sheet domains also connecting adjacent, parallel stroma thylakoids. We postulate that the tremendous variability in size of the junctional slits may reflect a novel, active role of junctional slits in the regulation of photosynthetic function. In particular, by controlling the size of junctional slits, plants could regulate the flow of ions and membrane molecules between grana and stroma thylakoid membrane domains.  相似文献   

9.
Many of the thylakoid membrane proteins of plant and algal chloroplasts are synthesized in the cytosol as soluble, higher molecular weight precursors. These precursors are post-translationally imported into chloroplasts, incorporated into the thylakoids, and proteolytically processed to mature size. In the present study, the process by which precursors are incorporated into thylakoids was reconstituted in chloroplast lysates using the precursor to the light-harvesting chlorophyll a/b protein (preLHCP) as a model. PreLHCP inserted into thylakoid membranes, but not envelope membranes, if ATP was present in the reaction mixture. Correct integration into the bilayer was verified by previously documented criteria. Integration could also be reconstituted with purified thylakoid membranes if reaction mixtures were supplemented with a soluble extract of chloroplasts. Several other thylakoid precursor proteins in addition to preLHCP, but no stromal precursor proteins, were incorporated into thylakoids under the described assay conditions. These results suggest that the observed in vitro activity represents in vivo events during the biogenesis of thylakoid proteins.  相似文献   

10.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

11.
Plastocyanin is a nuclear-encoded chloroplast thylakoid lumen protein that is synthesized in the cytoplasm with a large N-terminal extension (66 amino acids). Transport of plastocyanin involves two steps: import across the chloroplast envelope into the stroma, followed by transfer across the thylakoid membrane into the lumen. During transport the N-terminal extension is removed in two parts by two different processing proteases. In this study we examined the functions of the two cleaved parts, C1 and C2, in the transport pathway of plastocyanin. The results show that C1 mediates import into the chloroplast. C1 is sufficient to direct chloroplast import of mutant proteins that lack C2. It is also sufficient to direct import of a nonplastid protein and can be replaced functionally by the transit peptide of an imported stromal protein. C2 is a prerequisite for intraorganellar routing but is not required for chloroplast import. Deletions in C2 result in accumulation of intermediates in the stroma or on the outside of the thylakoids. The fact that C1 is functionally equivalent to a stromal-targeting transit peptide shows that plastocyanin is imported into the chloroplast by way of the same mechanism as stromal proteins, and that import into and routing inside the chloroplasts are independent processes.  相似文献   

12.
The homologous import and membrane association of a key enzyme for chlorophyll biosynthesis, the NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR, EC 1.6.99.1) into pea chloroplasts was investigated in vitro. The co-factor, NADPH, decreased binding of the precursor protein (pPOR) to the envelope membranes in the presence of ATP. The decrease of the binding reaction with NADPH was not observed with the precursor of the small subunit of Rubisco (pSS).
To investigate possible substrate-dependency for the import reaction, internal Pchlide concentrations in the plastids were raised by either an addition of δ -aminolevulinic acid to isolated plastids or etiolation of the seedlings prior to plastid isolation. Increased amounts of plastid-bound Pchlide gave no observable differences in POR import.
The capacity of POR and 11 different POR mutants, carrying charged-to-alanine scanning substitutions, to form a catalytically active POR-Pchlide-NADPH complex and to associate with the thylakoid membranes in a protease-resistant way were tested. Wild-type POR, as well as the mutants with charge substitutions in the N-terminal region of the protein, exhibited higher catalytic activity than the POR mutants carrying substitutions in the C-terminal region. Formation of a catalytically active complex did not, however, increase the association efficiency onto the thylakoids. We can, therefore, postulate that the import of pea POR into pea chloroplasts was not substrate-dependent, nor did formation of catalytically active complexes stimulate or inhibit the membrane association reaction of POR.  相似文献   

13.
We have used an in vitro reconstitution system, consisting of cell-free translation products and intact chloroplasts, to investigate the pathway from synthesis to assembly of two polypeptide subunits of the light-harvesting chlorophyll-protein complex. These polypeptides, designated 15 and 16, are integral components of the thylakoid membranes, but they are products of cytoplasmic protein synthesis. Double immunodiffusion experiments reveal that the two polypeptides share common antigenic determinants and therefore are structurally related. Nevertheless, they are synthesized in vitro from distinct mRNAs to yield separate precursors, p15 and p16, each of which is 4,000 to 5,000 daltons larger than its mature form. In contrast to the hydrophobic mature polypeptides, the precursors are soluble in aqueous solutions. Along with other cytoplasmically synthesized precursors, p15 and p16 are imported into purified intact chloroplasts by a post- translational mechanism. The imported precursors are processed to the mature membrane polypeptides which are recovered exclusively in the thylakoids. The newly imported polypeptides are assembled correctly in the thylakoid lipid bilayer and they bind chlorophylls. Thus, these soluble membrane polypeptide precursors must move from the cytoplasm through the two chloroplast envelope membranes, the stroma, and finally insert into the thylakoid membranes, where they assemble with chlorophyll to form the light-harvesting chlorophyll protein complex.  相似文献   

14.
CAB-7p is a chlorophyll a/b binding protein of photosystem I (PSI). It is found in light-harvesting complex I 680 (LHCI-680), one of the chlorophyll complexes produced by detergent solubilization of PSI. Two types of evidence are presented to indicate that assembly of CAB-7p into PSI proceeds through a membrane intermediate. First, when CAB-7p is briefly imported into chloroplasts or isolated thylakoids, we initially observe a fast-migrating membrane form of CAB-7p that is subsequently converted into PSI. The conversion of the fast-migrating form into PSI does not require stroma or ATP. Second, trypsin treatment of thylakoids containing radiolabeled CAB-7p indicates that there are at least two membrane forms of the mature 23-kD protein. The predominant form is completely resistant to proteolysis; a second form of the protein is cleaved by trypsin into 12- and 7-kD polypeptides. We interpret this to mean that the intermediate is a cleavable form that becomes protease resistant during assembly. This notion is supported by the observation that CAB-7p in LHCI-680 is largely cleaved by trypsin into 12- and 7-kD polypeptides, whereas CAB-7p in isolated PSI particles is trypsin resistant. In vitro, we generated a mutant form of CAB-7p, CAB-7/BgI2p, that was able to integrate into thylakoid membranes but was unable to assemble into PSI. The membrane form of CAB-7/BgI2p, like LHCI-680, was predominantly cleaved by trypsin into 12- and 7-kD fragments. We suggest that the mutant protein is arrested at an intermediate stage in the assembly pathway of PSI. Based on its mobility in nondenaturing gels and its susceptibility to protease cleavage, we suggest that the intermediate form is LHCI-680. We propose the following distinct stages in the biogenesis of LHCI: (a) apoprotein is integrated into the thylakoid, (b) chlorophyll is rapidly bound to apoprotein forming LHCI-680, and (c) LHCI-680 assembles into the native PSI complex.  相似文献   

15.
Multiple sorting pathways operate in chloroplasts to localize proteins to the thylakoid membrane. The signal recognition particle (SRP) pathway in chloroplasts employs the function of a signal recognition particle (cpSRP) to target light harvesting chlorophyll-binding protein (LHCP) to the thylakoid membrane. In assays that reconstitute stroma-dependent LHCP integration in vitro, the stroma is replaceable by the addition of GTP, cpSRP, and an SRP receptor homolog, cpFtsY. Still lacking is an understanding of events that take place at the thylakoid membrane including the identification of membrane proteins that may function at the level of cpFtsY binding or LHCP integration. The identification of Oxa1p in mitochondria, an inner membrane translocase component homologous to predicted proteins in bacteria and to the albino3 (ALB3) protein in thylakoids, led us to investigate the potential role of ALB3 in LHCP integration. Antibody raised against a 50-amino acid region of ALB3 (ALB3-50aa) identified a single 45-kDa thylakoid protein. Treatment of thylakoids with antibody to ALB3-50aa inhibited LHCP integration, whereas the same antibody treatment performed in the presence of antigen reversed the inhibition. In contrast, transport by the thylakoid Sec or Delta pH pathways was unaffected. These data support a model whereby a distinct translocase containing ALB3 is used to integrate LHCP into thylakoid membranes.  相似文献   

16.
K Cline  R Henry  C Li    J Yuan 《The EMBO journal》1993,12(11):4105-4114
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

17.
The light-harvesting chlorophyll a/b protein (LHCP) is an approximately 25,000-D thylakoid membrane protein. LHCP is synthesized in the cytosol as a precursor and must translocate across the chloroplast envelope before becoming integrally associated with the thylakoid bilayer. Previous studies demonstrated that imported LHCP traverses the chloroplast stroma as a soluble intermediate before thylakoid insertion. Here, examination of this intermediate revealed that it is a stable, discrete approximately 120,000-D species and thus either an LHCP oligomer or a complex with another component. In vitro-synthesized LHCP can be converted to a similar form by incubation with a stromal extract. The stromal component responsible for this conversion is proteinaceous as evidenced by its inactivation by heat, protease, and NEM. Furthermore, the conversion activity coelutes from a gel filtration column with a stromal protein factor(s) previously shown to be necessary for LHCP integration into isolated thylakoids. Conversion of LHCP to the 120-kD form prevents aggregation and maintains its competence for thylakoid insertion. However, conversion to this form is apparently not sufficient for membrane insertion because the isolated 120-kD LHCP still requires stroma to complete the integration process. This suggests a need for at least one more stroma-mediated reaction. Our results explain how a hydrophobic thylakoid protein remains soluble as it traverses the aqueous stroma. Moreover, they describe in part the function of the stromal requirement for insertion into the thylakoid membrane.  相似文献   

18.
Semenova GA 《Tsitologiia》2005,47(6):510-518
An intrathylakoid electron opaque substance, further referred to as loculin, is found in 80-90 % of thylakoids of tansy leaf mesophyll chloroplasts at the stage of flower bud formation and flowering. Upon conventional isolation of chloroplasts in aqueous solution, and fixation in osmium solution alone, loculin is not retained in thylakoids. Preliminary fixation of leaves in glutaraldehyde makes it possible to isolate chloroplasts without injuring the envelope and stroma (glutar chloroplasts), and loculin is retained in thylakoids under these conditions. Upon prolonged incubation of glutar chloroplasts (for 24 h), loculin leaves thylakoids in the form of drops concentrating on the chloroplast envelope. Upon crossing the thylakoid membrane and chloroplast, loculin properties remain unchanged. It is assumed that loculin is an important metabolite necessary for active growth.  相似文献   

19.
? The thylakoid protease Deg2 is a serine-type protease peripherally attached to the stromal side of the thylakoid membrane. Given the lack of knowledge concerning its function, two T-DNA insertion lines devoid of Deg2 were prepared to study the functional importance of this protease in Arabidopsis thaliana. ? The phenotypic appearance of deg2 mutants was studied using a combination of stereo and transmission electron microscopy, and short-stress-mediated degradation of apoproteins of minor light-harvesting antennae of photosystem II (PSII) was analysed by immunoblotting in the mutants in comparison with wild-type plants. ? Deg2 repression produced a phenotype in which reduced leaf area and modified chloroplast ultrastructure of older leaves were the most prominent features. In contrast to the wild type, the chloroplasts of second-whorl leaves of 4-wk-old deg2 mutants did not display features typical of the early senescence phase, such as undulation of the chloroplast envelope and thylakoids. The ability to degrade the photosystem II light-harvesting protein Lhcb6 apoprotein in response to brief high-salt, wounding, high-temperature and high-irradiance stress was demonstrated to be impaired in deg2 mutants. ? Our results suggest that Deg2 is required for normal plant development, including the chloroplast life cycle, and has an important function in the degradation of Lhcb6 in response to short-duration stresses.  相似文献   

20.
Intact chloroplasts were isolated from developing first leaves of spinach. The chloroplasts were broken and separated into an extensively washed membrane (thylakoid) fraction and a soluble (stroma) fraction. The membrane fraction contained polyribosomes with properties similar to those of thylakoid-bound polyribosomes of other organisms. The distribution of mRNA for large-subunit ribulosebisphosphate carboxylase (LS) was determined by translating RNA from chloroplasts, thylakoids, and stroma in a wheat germ cell-free translation system. LS translation product was identified by immunoprecipitation with antibody to LS from spinach, electrophoresis of the immunoprecipitated product, and fluorography. At least 44% of translatable chloroplast LS-mRNA was in the washed thylakoid fraction. Thylakoid-bound LS-mRNA was in polyribosomes since LS was produced by thylakoids in an Escherichia coli cell-free translation system under conditions where initiation did not take place. Our results demonstrate that membrane-bound polyribosomes can synthesize the stroma-localized polypeptide LS, and suggest that the thylakoids may be an important site of its synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号