首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de‐queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen‐laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen‐laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non‐natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.  相似文献   

2.
In queen honey bees the free amino acid content in the haemolymph clearly depends on the physiological function and social environment of the individual. While in drones and workers the content of free amino acids increases after emergence until it reaches a peak in 5-day-old animals and decreases afterwards, the amino acid content in queens reaches its highest level (>60 nmol/ microl haemolymph) with the onset of egg laying (10 d of age). This level is about 2.5 times more than the highest level found in workers. Queens maintain this high level also when they are older (>30 d) and continue to lay eggs in average colonies. As in drones and workers, in queens the predominant amino acid is proline, which accounts for more than 50% of the total content of free amino acids in egg-laying individuals. When 10-day-old queens are prevented from mating and do not lay eggs, their amino acid content is significantly lower compared to laying queens of the same age. Also the social environment influences the contents of free amino acids in queens. When virgin queens were kept for 6 days with 20 worker bees and sufficient honey and pollen in an incubator, they had significantly lower concentrations of amino acids than virgin queens living for the same period with about 8000 workers in a colony. Most probably, the high amino acid concentration in the haemolymph is the basis for the high protein synthesis activity of laying queens.  相似文献   

3.
西方蜜蜂幼虫发育温度对成体翅膀形态的影响   总被引:3,自引:0,他引:3  
为探讨不同恒定温度条件对培育蜜蜂蛹翅膀形态特征的影响,作者将进入蛹期的西方蜜蜂(Apismellifera)放入人工气候箱里,分别在32、35和36℃的恒定温度条件培育,直到蜜蜂蛹羽化出房为止。测量了蜜蜂翅膀的标准形态特征,包括翅的大小、肘脉长和11个翅肘脉角,所得到的数据进行多变量比较分析、相关性分析、主成分分析和区别分析。研究结果表明,不同温度条件对蜜蜂翅膀形态特征有明显的影响  相似文献   

4.
Experimental work was conducted at two apiaries located in Irbid district and in Shuna North, Jordan, during the years 2004–2006. The aims of these investigations were to estimate the seasonal changes in the infestation rates of the bee louse (Braula sp.) and to develop an easy and rapid method of estimating the infestation rate on workers with bee Braula. Two major honey bee subspecies are reared in Jordan; Apis mellifera carnica and Apis mellifera syriaca were used in this study. The results showed that the infestation rate began to increase rapidly in May, reaching the season's maximum rate of 16.2%, 15.8% and 17.4% for A. m. carnica and 22.6%, 23.9% and 22.9% for A. m. syriaca in December of 2004, 2005 and 2006, respectively. The maximum adult numbers of bees were found in April and June, whereas the minimum for the year was in January in both honey bee subspecies colonies during the study period. The actual population of the bee louse could be estimated by counting the daily dropped lice and multiplying by a factor of 158. This factor is valid for the experimental colonies of both subspecies kept for 3 years under semi‐arid Mediterranean conditions.  相似文献   

5.
Detection of multiple viruses in queens of the honey bee Apis mellifera L   总被引:2,自引:0,他引:2  
Individual honey bee Apis mellifera L. queens were examined for the presence of six honey bee viruses including acute bee paralysis virus, chronic bee paralysis virus, black queen cell virus, deformed wing virus, Kashmir bee virus, and sacbrood virus. All viruses, except ABPV, were detected in the samples. Among queens examined for virus infections, 93% had multiple virus infections. The detection of viruses in queens raises the possibility of a vertical transmission pathway wherein infected queens can pass virus through their eggs to their offspring.  相似文献   

6.
The mitochondrial DNA (mtDNA) of individuals from 79 colonies of Apis mellifera from five Canary Islands was studied using the Dra I test based on the restriction of PCR products of the tRNAleu–COII intergenic region. Five haplotypes of the African (A) lineage and one of the west European (C) lineage were found. The haplotypes A14 and A15 are described for the first time. These haplotypes have a new P sequence named P1. The wide distribution and high frequency of haplotype A15 suggest that it is characteristic of the Canarian Archipelago. Sources of haplotype variability of honeybee mtDNA in the Canary Islands (waves of colonization from Africa, queen importations, habitat diversification) are discussed.  相似文献   

7.
8.
Variability of mitochondrial DNA (mtDNA) of the honey bee Apis mellifera L. has been investigated by restriction and sequence analyses on a sample of 68 colonies from ten different subspecies. The 19 mtDNA types detected are clustered in three major phylogenetic lineages. These clades correspond well to three groups of populations with distinct geographical distributions: branch A for African subspecies (intermissa, monticola, scutellata, andansonii and capensis), branch C for North Mediterranean subspecies (caucasica, carnica and ligustica) and branch M for the West European populations (mellifera subspecies). These results partially confirm previous hypotheses based on morphometrical and allozymic studies, the main difference concerning North African populations, now assigned to branch A instead of branch M. The pattern of spatial structuring suggests the Middle East as the centre of dispersion of the species, in accordance with the geographic areas of the other species of the same genus. Based on a conservative 2% divergence rate per Myr, the separation of the three branches has been dated at about 1 Myr BP.  相似文献   

9.
Summary The number and frequencies of subfamilies in a honey bee colony were determined by DNA fingerprinting. Queen and brood samples were taken from three colonies with artificially inseminated queens and from one colony with a naturally mated queen. UsingHae III restriction enzyme and (GATA)4 oligonucleotide, the number of subfamilies in the colonies with artificially inseminated queens corresponded with the number of drones used for insemination. In the colony with the naturally mated queen, 12 subfamilies were found in a random sample of 104 workers. Considering that subfamily frequencies range from 1 to 26%, introcolonial worker relationship was estimated to be 0.328, corresponding to a genetical effective number of 6.4 matings.  相似文献   

10.
Abstract. The effect of semen storage time, drone age and semen contamination on honey bee semen quality was investigated using assays for motility and viability of semen in vitro. Four age groups (1, 2, 4 and 6 weeks) and five storage times (0, 1, 2, 4 and 6 weeks) were examined. As storage time increased, sperm viability and motility significantly decreased. However, motility patterns of unstored semen samples were significantly lower than those samples that were stored up to 2 weeks. Sperm viability decreased significantly with increasing drone age, but motility patterns did not change. Those semen samples that were found to be contaminated with foreign particles or microorganisms had a significantly lower mean viability than uncontaminated samples.  相似文献   

11.
Abstract. One way in which Apis mellifera honey bees resist Varroa destructor is by detection and elimination of nestmates. This study uses behavioural tests and electroanntennography to assess the role of chemostimuli in recognition by honey bees of this acarian ectoparasite. Behavioural tests using living or dead parasites involved observation of honey bee grooming activity (antennation) under controlled conditions in Petri dishes, and removal behaviour (uncapping and elimination of parasitized and unparasitized control brood cells) under natural conditions. Some bees from colonies with both small and large parasite populations showed aggressive behaviour (biting). No difference was observed according to whether the mite was dead or alive. Under natural conditions, bees uncapped more parasitized cells than control cells. Electroantennographic tests were performed to measure sensitivity to various Varroa extracts at three concentrations (10, 20 and 30 Varroa Equivalents). Only 30 Varroa Equivalent methanol extracts made from Varroa collected from brood cells elicited significantly greater antennal response than controls (pure solvent). All three methanol extracts elicited significantly greater antennal response than controls. No response was observed using Varroa extracts made with acetone or hexane. These findings suggest that polar products may act as chemostimuli for recognition of V. destructor by honey bees. Further study will be necessary to determine which polar products are involved in this recognition and assess grooming and removal behaviour using these products.  相似文献   

12.
Summary This study investigated the effects of colony growth and development, food storage, foraging activity and weather on the migration behavior of African honey bees in the Okavango River Delta, Botswana. Four observation colonies were studied during the honey bee migration season (November–May), at which time the availability of blooming species was reduced. Two of the colonies (colonies 1 & 2) migrated during the study period, while the remaining two (colonies 3 & 4) did not. During the 4–6 weeks preceding the onset of migration preparations, colonies 1 & 2 exhibited increasing population sizes, high levels of brood production with low brood mortality, relatively large stores of food, and increasing mass. In contrast, the populations of colonies 3 & 4 did not increase, brood-rearing activity was erratic and lower, brood mortality was higher, food stores became depleted and colony mass declined. Both colonies 3 & 4 ceased rearing brood, and colony 3 died of starvation. Colony foraging activity was examined by monitoring waggle-dance activity 2–3 days each week. For 4–6 weeks before the onset of migration in colonies 1 & 2, daily foraging areas and mean daily foraging distances became increasingly large and variable. Colonies 3 & 4 exhibited foraging patterns similar to those observed for colonies 1 & 2 preceding migration. There was no clear association between 7 weather parameters examined and migration behavior. These data suggest that migration is influenced by an interaction of intra-colony demographics, food reserves and foraging patterns. Migration may be feasible only for those colonies that possess (1) a population of appropriate size and age structure to compensate for the natural attrition of older workers during the emigration process, and (2) sufficient food reserves for long-distance travel and the establishment of a new nest. Changing foraging patterns may reflect a deteriorating foraging environment, which may trigger the onset of migration preparations, provided that colony demographics and food reserves are conducive. Colonies that show decreased brood production, higher brood mortality and reduced food stores may be incapable of migrating, even when experiencing deteriorating foraging conditions. Rather, such colonies may have a greater chance of survival if they attempt to persist in a given area.  相似文献   

13.
Summary In the south-east of France, local honey bees possess only the B allele at the MDH locus, whereas the races which are usually imported into this area do not have this allele. The proportion of non-B genes in a sample of drones was used to measure the genetic pollution in the local population. Within the course of a breeding scheme of local bees, 99 queens, whose genotypes are BB, were naturally mated between April 25 and June 10, 1985 at la Tave (Gard, France). Twenty daughters-workers of each queen were analysed at the MDH locus. The frequency of the B allele in drones that mated with these queens is estimated by the proportion of workers with genotype BB and the genetic pollution by the cumulated frequency of the other alleles. The sampling variances of these frequencies involve a coefficient which is a function of the average number of drones mated with a queen. This latter parameter is estimated through the maximum likelihood method. In addition to the three well-known alleles, a rare allele (frequency=0.0055), possibly equivalent to the S1 allele described by Badino et al. (1983), has been found in three different colonies. Cumulating the frequencies of the non-B alleles results in an estimation of the genetic pollution equal to 0.0394 (±0.0071). This low value allows us to proceed to the next step of the selection project. The mean number of drones mated to a queen is 12.4 with a (10.4–19.3) confidence interval at the 90% level.  相似文献   

14.
This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August–November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.  相似文献   

15.

Background

Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages.

Results

The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense.

Conclusions

Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-563) contains supplementary material, which is available to authorized users.  相似文献   

16.
ABSTRACT. Honeybees rapidly became adapted to synthetic alarm pheromone components dispensed within their hives, and were less; inclined to sting both unmarked targets and targets marked with the; alarm pheromone. The possible application to beekeeping is discussed.  相似文献   

17.
Summary Waggle dance activity associated with seasonal absconding (migration) was investigated in two colonies of the African honey bee. Prior to absconding, waggle dances regularly communicated distances up to 10–20 km from the nests. However, compared to waggle dances observed during nonabsconding periods, those occurring prior to migration were less associated with food sources, occurred during periods of little or no flight activity, and exhibited great variability in the communication of distance by consecutive waggle runs of individual bees. It is therefore unlikely that migration dances communicated the locations of, or stimulated immediate recruitment for, specific foraging or nesting sites. Rather, the dances may have functioned to establish a general route of travel. The majority of migration dances observed were oriented in an easterly direction, and upon departure both colonies traveled towards the E-SE. The orientation of migration dances occurred independently of the directions communicated by waggle dances associated with past foraging success or the sampling of alternate foraging areas. Migration dance orientation may have been affected by prevailing wind directions, because during the migration period winds blew primarily from the east. However, it is unlikely that wind direction was the only factor influencing migration dance orientation. The lack of immediate flight activity associated with migration dance performance suggests the dances may have gradually prepared colonies for migratory movement by conveying a message to fly for a long, but unspecified distance in a certain direction. Waggle dances associated with migration may therefore function differently from those associated with foraging and nest site selection, which convey both the distance and direction to specific locations.  相似文献   

18.
19.
Honeybees (Apis mellifera L.) have an extreme polyandrous mating system. Worker offspring of 19 naturally mated queens was genotyped with DNA microsatellites, to estimate male reproductive success of 16 drone producing colonies. This allowed for estimating the male mating success on both the colony level and the level of individual drones. The experiment was conducted in a closed population on an isolated island to exclude interferences of drones from unknown colonies. Although all colonies had produced similar numbers of drones, differences among the colonies in male mating success exceeded one order of magnitude. These differences were enhanced by the siring success of individual drones within the offspring of mated queens. The siring success of individual drones was correlated with the mating frequency at the colony level. Thus more successful colonies not only produced drones with a higher chance of mating, but also with a significantly higher proportion of offspring sired than drones from less successful colonies. Although the life cycle of honeybee colonies is very female centred, the male reproductive success appears to be a major driver of natural selection in honeybees.  相似文献   

20.
Summary Seasonal foraging patterns were investigated using six observation colonies maintained in the Okavango Delta, Botswana. Pollen collection, flight from the hive, and recruitment for pollen and nectar sources occurred throughout the 11 months of the study. However, the distribution of foraging activity throughout the day changed seasonally. Colonies emphasized recruitment for pollen sites throughout most of the year. Brood production occurred in all months except May, and there was a significant, positive correlation between the proportion of recruitment activity devoted to pollen sources and the amount of brood comb in the colonies. The seasonal foraging patterns ofscutellata in the Okavango were similar to those of Africanized honey bees in the neotropics. The extended foraging season and emphasis on pollen collection may be associated with the high swarming rates and migrational movements of tropical honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号