首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since alpha-CA catalyzes the conversion of CO2 to HCO3-, the role of CO2 in periplasmic buffering was studied using an alpha-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that alpha-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the alpha-CA knockout. In the mutant or in the presence of acetazolamide, there was an approximately 3 log10 decrease in acid survival. In acid, absence of alpha-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the alpha-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of alpha-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3- by the periplasmic alpha-CA.  相似文献   

2.
Helicobacter pylori is a human gastric pathogen that survives the strong acidity of the stomach by virtue of its urease activity. This activity produces ammonia, which neutralizes the bacterial microenvironment. UreI, an inner membrane protein, is essential for resistance to low pH and for the gastric colonization of mice by H. pylori. In the heterologous Xenopus oocytes expression system, UreI behaves like an H+-gated urea channel, and His-123 was found to be important for low pH activation. We investigated the role of UreI directly in H. pylori and showed that, in the presence of urea, strains expressing wild-type UreI displayed very rapid stimulation of extracellular ammonia production upon exposure to pH 相似文献   

3.
The size and complexity of many pH-gated channels have frustrated the development of specific structural models. The small acid-activated six-membrane segment urea channel of Helicobacter hepaticus (HhUreI), homologous to the essential UreI of the gastric pathogen Helicobacter pylori, enables identification of all the periplasmic sites of proton gating by site-directed mutagenesis. Exposure to external acidity enhances [(14)C]urea uptake by Xenopus oocytes expressing HhUreI, with half-maximal activity (pH(0.5)) at pH 6.8. A downward shift of pH(0.5) in single site mutants identified four of six protonatable periplasmic residues (His-50 at the boundary of the second transmembrane segment TM2, Glu-56 in the first periplasmic loop, Asp-59 at the boundary of TM3, and His-170 at the boundary of TM6) that affect proton gating. Asp-59 was the only site at which a protonatable residue appeared to be essential for pH gating. Mutation of Glu-110 or Glu-114 in PL2 did not affect the pH(0.5) of gating. A chimera, where the entire periplasmic domain of HhUreI was fused to the membrane domain of Streptococcus salivarius UreI (SsUreI), retained the pH-independent properties of SsUreI. Hence, proton gating of HhUreI likely depends upon the formation of hydrogen bonds by periplasmic residues that in turn produce conformational changes of the transmembrane domain. Further studies on HhUreI may facilitate understanding of other physiologically important pH-responsive channels.  相似文献   

4.
Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid analysis for determining protein-protein interactions, UreF as bait identified four interacting sequences encoding UreH, whereas UreG as bait detected five UreE sequences. These results were confirmed by coimmunoprecipitation and beta-galactosidase assays. Native PAGE immunoblotting of H. pylori inner membranes showed interaction of UreA/B with UreI, whereas UreI deletion mutants lacked this protein interaction. Deletion of ureE-H did not affect this interaction with UreI. Hence, the accessory proteins UreE/G and UreF/H form dimeric complexes and UreA/B form a membrane complex with UreI, perhaps enabling assembly of the urease apoenzyme at the membrane surface and immediate urea access to intrabacterial urease to allow rapid periplasmic neutralization.  相似文献   

5.
BACKGROUND: The lipopolysaccharide of Helicobacter pylori plays an important role in colonization and pathogenicity. The present study sought to compare structural and biological features of lipopolysaccharides from gastric and enterohepatic Helicobacter spp. not previously characterized. MATERIALS AND METHODS: Purified lipopolysaccharides from four gastric Helicobacter spp. (H. pylori, Helicobacter felis, Helicobacter bizzozeronii and Helicobacter mustelae) and four enterohepatic Helicobacter spp. (Helicobacter hepaticus, Helicobacter bilis, 'Helicobacter sp. flexispira' and Helicobacter pullorum) were structurally characterized using electrophoretic, serological and chemical methods. RESULTS: Structural insights into all three moieties of the lipopolysaccharides, i.e. lipid A, core and O-polysaccharide chains, were gained. All species expressed lipopolysaccharides bearing an O-polysaccharide chain, but H. mustelae and H. hepaticus produced truncated semirough lipopolysaccharides. However, in contrast to lipopolysaccharides of H. pylori and H. mustelae, no blood group mimicry was detected in the other Helicobacter spp. examined. Intra-species, but not interspecies, fatty acid profiles of lipopolysaccharides were identical within the genus. Although shared lipopolysaccharide-core epitopes with H. pylori occurred, differing structural characteristics were noted in this lipopolysaccharide region of some Helicobacter spp. The lipopolysaccharides of the gastric helicobacters, H. bizzozeronii and H. mustelae, had relative Limulus amoebocyte lysate activities which clustered around that of H. pylori lipopolysaccharide, whereas H. bilis, 'Helicobacter sp. flexispira' and H. hepaticus formed a cluster with approximately 1000-10,000-fold lower activities. H. pullorum lipopolysaccharide had the highest relative Limulus amoebocyte lysate activity of all the helicobacter lipopolysaccharides (10-fold higher than that of H. pylori lipopolysaccharide), and all the lipopolysaccharides of enterohepatic Helicobacter spp. were capable of inducing nuclear factor-Kappa B(NF-kappaB) activation. CONCLUSIONS: The collective results demonstrate the structural heterogeneity and pathogenic potential of lipopolysaccharides of the Helicobacter genus as a group and these differences in lipopolysaccharides may be indicative of adaptation of the bacteria to different ecological niches.  相似文献   

6.
7.
ureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3',4', 5-tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid. Isogenic ureI knockout mutants of several H. pylori strains were constructed by replacing the ureI gene of the urease gene cluster with a promoterless kanamycin resistance marker gene (kanR). Mutants carrying the modified ureAB-kanR-EFGH operon all showed wild-type levels of urease activity at neutral pH in vitro. The mutants resisted media of pH > 4.0 but not of pH < 4.0. Whereas wild-type bacteria showed high levels of urease activity below pH 4.0, this ability was not retained in the ureI mutants, resulting in inhibition of metabolism and cell death. Gene complementation experiments with plasmid-derived H. pylori ureI restored wild-type properties. The activation of urease activity found in structurally intact but permeabilized bacteria treated with 0.01% detergent (polyoxy-ethylene-8-laurylether; C12E8), suggested a membrane-limited access of urea to internal urease at neutral pH. Measurement of 14C-urea uptake into Xenopus oocytes injected with ureI cRNA showed acid activation of uptake only in injected oocytes. Acceleration of urea uptake by UreI therefore mediates the increase of intracellular urease activity seen under acidic conditions. This increase of urea permeability is essential for H. pylori survival in environments below pH 4.0. ureI-independent urease activity may be sufficient for maintenance of bacterial viability above pH 4.0.  相似文献   

8.
Non- H. pylori Helicobacter species (NHPHS) are associated with several important human and animal diseases. In the past year research into this group of bacteria has continued to gain attention, and novel species have been described in new niches owing to improvements in detection methods. Polymerase chain reaction and/or sequencing remain the gold standard for the detection of this genus. New insights into the pathogenesis of the NHPHS in hepatobiliary, gastric, and intestinal diseases were gained. In particular, data revealed interaction between hepatic steatosis and infectious hepatitis in the development of hepatocellular carcinoma. Evidence of an association between hepatitis C virus and Helicobacter spp. in hepatocarcinoma development was also provided; and male sex hormone signaling appeared to influence infectious hepatitis induced by Helicobacter hepaticus . More findings support an association between Helicobacter heilmannii and gastric adenocarcinoma; and in mice, mucins MUC4 and MUC5 but not MUC1 influence the colonization and pathogenesis of Helicobacter felis . Data indicated that the roles of the adaptive immune system in H. hepaticus -induced intestinal tumorigenesis are different in the small and large intestines, and environmental factors, such as bile acids may modulate H. hepaticus carcinogenic potential. New reports in the prevention and eradication of NHPHS showed a protective response against Helicobacter suis induced by vaccine administration, and a successful cross-foster rederivation method successfully eradicated Helicobacter spp. from contaminated mice litters. Overall, the studies provided insights into the pathophysiology of Helicobacter species other than Helicobacter pylori.  相似文献   

9.
BACKGROUND: Helicobacter pylori is a causative agent of gastric and duodenal ulcers and gastric cancer. Its urease enzyme allows survival in acid conditions and drives bacterial intracellular metabolism. We aimed to investigate the role of urease in determining the intragastric distribution of Helicobacter species in vivo. MATERIALS AND METHODS: The C57BL/6 mouse model of gastritis was used for infection with Helicobacter felis (CS1) or H. pylori (SS1). Urease-modulating compounds urea and/or fluorofamide (urease inhibitor) were administered to mice over 7 days. Concurrent gastric acid inhibition by omeprazole was also examined. Bacterial distribution in the antrum, body, antrum/body, and body/cardia transitional zones was graded "blindly" by histologic evaluation. Bacterial colony counts on corresponding tissue were also conducted. RESULTS: Urease inhibition by fluorofamide decreased H. pylori survival in most gastric regions (p < .05); however, there were no marked changes to H. felis colonization after this treatment. There was a consistent trend for decreased antral colonization, and an increase in antrum/body transitional zone and body colonization with excess 5% or 6% (w/v) urea treatment. Significant reductions of both Helicobacter species were observed with the co-treatment of urea and fluorofamide (p < .05). Collateral treatment with omeprazole did not alter H. pylori colonization patterns caused by urea/fluorofamide. CONCLUSIONS: Urease perturbations affect colonization patterns of Helicobacter species. Combined urea and fluorofamide treatment reduced the density of both Helicobacter species in our infection model.  相似文献   

10.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus   总被引:2,自引:0,他引:2  
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.  相似文献   

11.
胃内定植是引起幽门螺杆菌(Helicobacter pylori,H.pylori)感染的先决条件。H.pylori可穿过胃黏液层并与胃上皮细胞相互作用。这个定植过程主要受到H.pylori动力和尿素酶的影响。同时H.pylori形态、胃内pH、外膜蛋白及益生菌等也在其中扮演重要角色。该研究主要对H.pylori胃内定植过程中的相关影响因素进行综述。  相似文献   

12.
Molecular hydrogen is produced in the large intestine of animals due to the fermentation reactions of sugar catabolism. The gastric pathogen Helicobacter pylori and the liver pathogen Helicobacter hepaticus have the capacity to use molecular hydrogen as a respiratory substrate. The amount of the gas within tissues colonized by these pathogens is ample, and use of H2 significantly increases the stomach colonization ability of H. pylori.  相似文献   

13.
14.
Background:  Since the discovery of Helicobacter pylori , various enterohepatic Helicobacter spices have been detected in the guts of humans and animals. Some enterohepatic Helicobacters have been associated with inflammatory bowel disease or liver disease in mice. However the association of these bacteria with human diseases remains unknown.
Materials and Methods:  We collected 126 bile samples from patients with cholelithiasis, cholecystitis, gallbladder polyp, and other nonbiliary diseases. Samples were screened for the presence of enterohepatic Helicobacter spp. using cultures, nested PCR, or in situ hybridization. We tested for antibodies to H. pylori and H. hepaticus by Western blot analysis.
Results:  Attempts at cultivation were unsuccessful. However, H. hepaticus was detected in bile samples with nested PCR whereas H. bilis was not. Helicobacter hepaticus in the bile was confirmed by in situ hybridization, but H. hepaticus from bile samples was coccoid in appearance. We detected immunoglobulin G antibodies to H. hepaticus in bile samples by Western blotting. Helicobacter hepaticus was detected in 40 (32%) of total 126 samples as H. hepaticus positive if at least one of the three methods with nested PCR, in situ, or Western blotting. Patients with cholelithiasis (41%) and cholecystitis with gastric cancer (36%) had significantly higher ( p  = .029) prevalence of H. hepaticus infection than samples from patients with other diseases.
Conclusion:  Helicobacter hepaticus may closely associate with diseases of the liver and biliary tract in humans.  相似文献   

15.
Structure, function and localization of Helicobacter pylori urease.   总被引:3,自引:0,他引:3  
Helicobacter pylori is the causative agent of most cases of gastritis. Once acquired, H. pylori establishes chronic persistent infection; it is this long-term infection that, is a subset of patients, leads to gastric or duodenal ulcer, gastric cancer or gastric MALT lymphoma. All fresh isolates of H. pylori express significant urease activity, which is essential to survival and pathogenesis of the bacterium. A significant fraction of urease is associated with the surface of H. pylori both in vivo and in vitro. Surface-associated urease is essential for H. pylori to resist exposure to acid in the presence of urea. The mechanism whereby urease becomes associated with the surface of H. pylori is unique. This process, which we term "altruistic autolysis," involves release of urease (and other cytoplasmic proteins) by genetically programmed autolysis with subsequent adsorption of the released urease onto the surface of neighboring intact bacteria. To our knowledge, this is the first evidence of essential communal behavior in pathogenic bacteria; such behavior is crucial to understanding the pathogenesis of H. pylori.  相似文献   

16.
Colonization by Helicobacter pylori partly depends on acid-dependent adherence by urease to gastric mucin. To further verify the relevance of urease adherence to colonization, the influence of acidity on the binding sites of H. pylori urease was investigated. When enzyme-based in vitro ligand capture assays were used, the effect of acidity on the binding site of H. pylori urease was determined against a backdrop medium consisting of acidic buffers simulating the luminal side of gastric mucus. A high degree of stability was exhibited by adherent urease, suggesting a pivotal role by the denatured enzyme in the persistence of the bacterium within the acidified compartment of gastric mucus.  相似文献   

17.
Urease activity is vital for gastric colonization by Helicobacter species, such as the animal pathogen Helicobacter felis. Here it is demonstrated that H. felis expresses two independent, and distinct urease systems. H. felis isolate CS1 expressed two proteins of 67 and 70 kDa reacting with antibodies to H. pylori urease. The 67-kDa protein was identified as the UreB urease subunit, whereas the N-terminal amino acid sequence of the 70-kDa protein displayed 58% identity with the UreB protein and was tentatively named UreB2. The gene encoding the UreB2 protein was identified and located in a gene cluster named ureA2B2. Inactivation of ureB led to complete absence of urease activity, whereas inactivation of ureB2 resulted in decreased urease activity. Although the exact function of the UreA2B2 system is still unknown, it is conceivable that UreA2B2 may contribute to pathogenesis of H. felis infection through a yet unknown mechanism.  相似文献   

18.
19.
Urease has been suggested to be essential for colonization and pathogenesis of Helicobacter pylori infection. In the present study, we evaluated the effects of urease inhibitors [acetohydroxamic acid (AHA) and flurofamide (FFA)] on H. pylori-induced gastritis in Mongolian gerbils. Animals were orally inoculated with H. pylori, and given urease inhibitors in their diet throughout the experimental period of six weeks or four weeks, starting from two weeks after H. pylori inoculation. With the administration of AHA at doses of 100, 500, and 2500 ppm throughout the experimental period, H. pylori-induced gastritis in animals was decreased in a dose-dependent manner, significantly so at 2500 ppm. Suppression of gastric lesions was also evident in animals administered 2500 ppm AHA after the H. pylori infection. Bacterial infection rates were reduced to 40-50% of the control value of 100%, by the highest dose of AHA. The potent urease inhibitor, FFA, also caused marked amelioration of H. pylori-associated gastritis on administration at 100 ppm throughout the six-week experimental period or for four weeks after H. pylori infection. Animals treated with FFA had few visible gastric lesions, and the proportion infected with H. pylori was reduced to less than 10%. Since antibiotic-resistant strains of H. pylori have become a serious problem, nonantibiotic urease inhibitors may be very useful to control H. pylori-associated gastroduodenal disease.  相似文献   

20.
Acid stress is the most obvious challenge Helicobacter pylori encounters in human stomach. The urease system is the basic process used to maintain periplasmic and cytoplasmic pH near neutrality when H. pylori is exposed to acidic condition. However, since the urea concentration in gastric juice is approximately 1 mM, considered possibly insufficient to ensure the survival of H. pylori, it is postulated that additional mechanisms of pH homeostasis may contribute to the acid adaptation in H. pylori. In order to identify the acid-related proteins other than the urease system we have compared the proteome profiles of H. pylori strain 26695 exposed to different levels of external pH (7.4, 6.0, 5.0, 4.0, 3.0, and 2.0) for 30 min in the absence of urea using 2-DE. Differentially expressed proteins were identified by MALDI-TOF-TOF-MS analysis, which turned out to be 36 different proteins. The functions of these proteins included ammonia production, molecular chaperones, energy metabolism, cell envelope, response regulator and some proteins with unknown function. SOM analysis indicated that H. pylori responds to acid stress through multi-mechanisms involving many proteins, which depend on the levels of acidity the cells encounter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号