首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiomyocyte (CM) differentiation of embryonic stem cells (ESCs) is routinely cultured as two-dimensional (2D) monolayer, which doesn't mimic in vivo physiological environment and may lead to low differentiated level of ESCs. Here, we develop a novel strategy that enhances CM differentiation of ESCs in collagen matrix three-dimensional (3D) culture combined with indirect cardiac fibroblasts co-culture. ESCs were cultured in hanging drops to form embryoid bodies (EBs) and then applied on collagen matrix. The EBs were indirectly co-cultured with cardiac fibroblasts by the hanging cell culture inserts (PET 1 μm). The molecular expressions and ultrastructural characteristics of ESC-derived CMs (ESCMs) were analyzed by real time RT-PCR, immunocytochemistry, and Transmission Electron Microscopy (TEM). We found that the percentage of beating EBs with cardiac fibroblasts co-culture was significantly higher than that without co-culture after differentiation period of 8 days. Type I collagen used as 3D substrates enhanced the late-stage CM differentiation of ESCs and had effect on ultrastructural mature of ESCMs in late-stage development. The combined effects of 3D and co-culture that mimic in vivo physiological environment further improved the efficiency of CM differentiation from ESCs, resulting in fiber-like structures of cardiac cells with organized sarcomeric structure in ESCMs. This novel 3D co-culture system emphasizes the fact that the ESC differentiation is actively responding to cues from their environment and those cues can drive phenotypic control, which provides a useful in vitro model to investigate CM differentiation of stem cells.  相似文献   

2.
Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.  相似文献   

3.
The demonstration of germ cell and haploid gamete development from embryonic stem cells (ESCs) in vitro has engendered a unique set of possibilities for the study of germ cell development and the associated epigenetic phenomenon. The process of embryoid body (EB) differentiation, like teratoma formation, signifies a spontaneous differentiation of ESCs into cells of all three germ layers, and it is from these differentiating aggregates of cells that putative primordial germ cells (PGCs) and more mature gametes can be identified and isolated. The differentiation system presented here requires the differentiation of murine ESCs into EBs and the subsequent isolation of PGCs as well as haploid male gametes from EBs at various stages of differentiation. It serves as a platform for studying the poorly understood process of germ cell allocation, imprint erasure and gamete formation, with 4-6 weeks being required to isolate PGCs as well as haploid cells.  相似文献   

4.
MicroRNAs (miRNAs) have been identified as key players in cardiogenesis and heart pathophysiological processes. However, many miRNAs are still not recognized for their roles in cardiomyocytes differentiation. In this study, we evaluated the effects of microRNA-218 (miR-218) in cardiomyocyte differentiation of the mouse embryonic stem cells (ESCs) in vitro. The percentage of the beating embryoid bodies (EBs) in miR-218 mimic-treated cells was reduced to 32% compared with miR-218 mimic negative control (56%) on day 5 + 3. The amplitude of the intracellular Ca2+ transients in the cardiomyocytes derived from ESCs was reduced upon miR-218 overexpression, followed by the decreased calcium-related proteins and cell junction proteins expressions. Besides, miR-218 expression in ESCs was related to the directional spreading ability of EBs during differentiation. The increased expression of miR-218 could promote the migration of ESCs in vitro, while the decreased expression of miR-218 could inhibit the migration by the transwell experiment. Meanwhile, miR-218 could regulate cell migration–related proteins Cdc42 and Rac1. Platelet-derived growth factor receptor α (PDGFRα) was further confirmed to be a direct target of miR-218 both physically and functionally by dual-luciferase reporter assay. Our data further described that overexpression of PDGFRα rescued the miR-218-mediated inhibition of cardiomyocyte differentiation and restored the miR-218-mediated promotion of cell migration. In conclusion, miR-218 was demonstrated to exert an inhibitory function and promoted cell migration via targeting PDGFRα during cardiomyocyte differentiation from ESCs. The current study revealed the role of miR-218 and may provide an important hint for cardiomyocyte differentiation of ESCs and induced pluripotent stem cells.  相似文献   

5.
Mouse embryonic stem cells (ESCs) can be induced to form pancreatic exocrine enzyme-producing cells in vitro in a stepwise fashion that recapitulates the development in vivo. However, there is no protocol for the differentiation of pancreatic-like cells from human ESCs (hESCs). Based upon the mouse ESC model, we have induced the in vitro formation of pancreatic exocrine enzyme-producing cells from hESCs. The protocol took place in four stages. In Stage 1, embryoid bodies (EBs) were formed from dissociated hESCs and then treated with the growth factor activin A, which promoted the expression of Foxa2 and Sox17 mRNAs, markers of definitive endoderm. In Stage 2, the cells were treated with all-trans retinoic acid which promoted the transition to cells that expressed gut tube endoderm mRNA marker HNF1b. In Stage 3, the cells were treated with fibroblast growth factor 7 (FGF7), which induced expression of Pdx1 typical of pancreatic progenitor cells. In Stage 4, treatment with FGF7, glucagon-like peptide 1, and nicotinamide induced the expression amylase (AMY) mRNA, a marker for mature pancreatic exocrine cells. Immunohistochemical staining showed the expression of AMY protein at the edges of cell clusters. These cells also expressed other exocrine secretory proteins including elastase, carboxypeptidase A, chymotrypsin, and pancreatic lipase in culture. Production of these hESC-derived pancreatic enzyme-producing cells represents a critical step in the study of pancreatic organogenesis and in the development of a renewable source of human pancreatic-like exocrine cells.  相似文献   

6.
Fibroblasts are heterogeneous mesenchymal cells that play important roles in the production and maintenance of extracellular matrix. Although their heterogeneity is recognized, progenitor progeny relationships among fibroblasts and the factors that control fibroblast differentiation are poorly defined. The current study was designed to develop a reliable method that would permit in vitro differentiation of fibroblast-like cells from human and murine embryonic stem cells (ESCs). Undifferentiated ESCs were differentiated into embryoid bodies (EBs) with differentiation media. EBs were then cast into type I collagen gels and cultured for 21?d with basal media. The spindle-shaped cells that subsequently grew from the EBs were released from the gels and subsequently cultured as monolayers in basal media supplemented with serum. Differentiated cells showed a characteristic spindle-shaped morphology and had ultrastructural features consistent with fibroblasts. Immunocytochemistry showed positive staining for vimentin and alpha-smooth muscle actin but was negative for stage-specific embryonic antigens and cytokeratins. Assays of fibroblast function, including proliferation, chemotaxis, and contraction of collagen gels demonstrated that the differentiated cells, derived from both human and murine ESCs, responded to transforming growth factor-β1 and prostaglandin E(2) as would be expected of fibroblasts, functions not expected of endothelial or epithelial cells. The current study demonstrates that cells with the morphologic and functional features of fibroblasts can be reliably derived from human and murine ESCs. This methodology provides a means to investigate and define the mechanisms that regulate fibroblast differentiation.  相似文献   

7.
Insulin-secreting pancreatic beta cells play a key role in the pathogenesis of diabetes mellitus. Potential new treatments for this disease include cell-replacement therapies using embryonic stem cells (ESCs). We have generated ESCs from a transgenic mouse model, mouse insulin 1 promoter (MIP) green fluorescent protein (GFP) mice, in which embryonic and adult beta cells are genetically tagged with GFP. The aim of the present study is to examine the differentiation potential of MIP-GFP ESCs in the microenvironment of the kidney capsule. The ESCs grew rapidly and formed a teratoma with GFP-expressing beta-like cells present in clusters that formed a cord-like structure similar to what is seen in the embryonic pancreas. These structures also included glucagon-expressing alpha cells and amylase-expressing acinar cells. Electron microscopic analysis showed insulin-like granules in columnar epithelium with microvilli adjacent to exocrine-like granule-containing cells. The MIP-GFP ESCs should be a useful research tool to study the differentiation capacity of ESCs toward pancreatic lineages.  相似文献   

8.
9.
Murine embryonic stem cells (ESC) provide a unique homogeneous cell system for studying early vasculogenic cell differentiation in vitro. In this report, we characterized endothelial development of cultured E14 ESCs and mapped the effects of vascular endothelial growth factor (VEGF) on these cells. After removal of leukemia inhibitory factor undifferentiated state ESCs were precultured for 6 days and then cultured for up to 30 days in differentiation culture medium, with or without supplemental VEGF. ELISA analysis was used to detect endogenous VEGF levels. Early vasculogenic development and expression of selected genes were characterized using flow cytometry for specific antigens and quantitative RT-PCR. ELISA analysis showed no endogenous VEGF after preculture and at day 2 in unsupplemented culture, therafter VEGF levels rise. Directly after preculture a high proportion (36%) of the ESCs showed positivity for endothelial CD31. We describe characteristic endothelial differentiation patterns in embryoid bodies (EB) kept in culture for up to 30 days. VEGF supplementation lead to qualitative changes in the EB vessels, specific activation of vasculogenesis-related genes (CD31, CD144, and ERG) and temporary down-regulation of the VEGF receptor gene flk-1. VEGF supplementation did not produce measurable changes in the endothelial cell fractions as judged by surface antigen presence. We conclude that early ESCs may undergo endothelial differentiation through VEGF-independent pathways, whereas endothelial cell patterns in EBs are cytokine dependent and fully stimulated by endogenous cytokine levels.  相似文献   

10.
11.
In gastrulating embryos, various types of cells are generated before differentiation into specific lineages. The mesoderm of the gastrulating mouse embryo represents a group of such intermediate cells. PDGF receptor alpha (PDGFRα), c-Kit and fetal liver kinase 1 (Flk1) are expressed in distinctive mesodermal derivatives of post-gastrulation embryos. Their expressions during gastrulation were examined by whole mount immunostaining with monoclonal antibodies against these three receptors. The antibodies stained different mesodermal subsets in gastrulating embryos. Flow cytometry of head fold stage embryos revealed that Flk1+ mesodermal cells could be further classified by the level of c-Kit expression. To examine the possibility that hematopoietic cell differentiation is initiated from the Flk1+ mesoderm, embryonic stem (ES) cells were cultured on the OP9 or PA6 stromal cell layer; the former but not the latter supported in vitro hematopoiesis from ES cells. Flk1+ cells were detected only on the OP9 cell layer from day 3 of differentiation before the appearance of hematopoietic cells. Thus, Flk1+ cells will be required for in vitro ES cell differentiation into hematopoietic cells. The results suggest that these three receptor tyrosine kinases will be useful for defining and sorting subsets of mesodermal cells from embryos or in vitro cultured ES cells.  相似文献   

12.
13.
Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.  相似文献   

14.
Embryoid bodies (EBs) are primitive embryonic structures derived from differentiating embryonic stem cells (ESCs). Many techniques have been used to obtain EBs. Improving the technique of EB formation can help in achieving better results in ESCs differentiation into neurons, myocardiocytes, haemopoeitic cells, and others. We evaluated the use of Sigmacote™ as a hydrophobic substrate to improve EB formation. CCE and P19 cell lines were used to obtain EBs and retinoic acid was used to induce neural differentiation. The results revealed that Sigmacote™, as a hydrophobic substrate, can improve EB formation from ESCs. Our results demonstrate that the silicon-coating of glass petri dishes by Sigmacote™ is an easy and reproducible technique to enhance EB formation from murine ESCs and EC cells.  相似文献   

15.
The potential use of embryonic stem (ES) cells for cell therapy of diabetes requires improved methods for differentiation and isolation of insulin-producing beta-cells. The signal transduction protein SHB may be involved in both angiogenesis and beta-cell development. Here we show that cells expressing the pancreatic endodermal marker PDX-1 appear in the vicinity of vascular structures in ES cell-derived embryoid bodies (EBs) cultured in vitro. Moreover, overexpression of SHB as well as culture of EBs in presence of the angiogenic growth factors PDGF or VEGF enhanced the expression of PDX-1 and/or insulin mRNA. Finally, expression of GFP under control of the PDX-1 promoter in EBs allowed for the enrichment by FACS of cells expressing PDX-1, C-peptide, and insulin as determined by immunofluorescence. It is concluded that SHB and angiogenic factors promote the development of cells expressing PDX-1 and insulin in EBs and that such cells can be separated by FACS.  相似文献   

16.
The homeobox gene Mixl1 is expressed in the primitive streak of the gastrulating embryo, and marks cells destined to form mesoderm and endoderm. The role of Mixl1 in development of haematopoietic mesoderm was investigated by analysing the differentiation of ES cells in which GFP was targeted to one (Mixl1(GFP/w)) or both (Mixl1(GFP/GFP)) alleles of the Mixl1 locus. In either case, GFP was transiently expressed, with over 80% of cells in day 4 embryoid bodies (EBs) being GFP(+). Up to 45% of Mixl1(GFP/w) day 4 EB cells co-expressed GFP and the haemangioblast marker FLK1, and this doubly-positive population was enriched for blast colony forming cells (BL-CFCs). Mixl1-null ES cells, however, displayed a haematopoietic defect characterised by reduced and delayed Flk1 expression and a decrease in the frequency of haematopoietic CFCs. These data indicated that Mixl1 was required for efficient differentiation of cells from the primitive streak stage to blood. Differentiation of ES cells under serum-free conditions demonstrated that induction of Mixl1- and Flk1-expressing haematopoietic mesoderm required medium supplemented with BMP4 or activin A. In conclusion, this study has revealed an important role for Mixl1 in haematopoietic development and demonstrates the utility of the Mixl1(GFP/w) ES cells for evaluating growth factors influencing mesendodermal differentiation.  相似文献   

17.
The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP) transgene from an internal phosphoglycerate kinase (PGK) promoter throughout development to hematopoietic cells in vitro. An oncoretrovirus vector containing the MESV LTR and the GFP gene was used for comparison. Fluorescence-activated cell sorting analysis of transduced CCE ES cells showed 99.8 and 86.7% GPF-expressing ES cells in the VSV-G-pseudotyped lentivirus (multiplicity of infection [MOI] = 59)- and oncoretrovirus (MOI = 590)-transduced cells, respectively. Therefore, VSV-G pseudotyping of lentiviral and oncoretrovirus vectors leads to efficient transduction of ES cells. Lentivirus vector integration was verified in the ES cell colonies by Southern blot analysis. When the transduced ES cells were differentiated in vitro, expression from the oncoretrovirus LTR was severely reduced or extinct in day 6 EBs and ES cell-derived hematopoietic colonies. In contrast, many lentivirus-transduced colonies, expressing the GFP gene in the undifferentiated state, continued to express the transgene throughout in vitro development to EBs at day 6, and many continued to express in cells derived from hematopoietic colonies. This experimental system can be used to analyze lentivirus vector design for optimal expression in hematopoietic cells and for gain-of-function experiments during ES cell development in vitro.  相似文献   

18.
19.
Embryonic stem cells (ESCs) are pluripotent cells capable of differentiating into all somatic and germ cell types. The intrinsic ability of pluripotent cells to generate a vast array of different cells makes ESCs a robust resource for a variety of cell transplantation and tissue engineering applications, however, efficient and controlled means of directing ESC differentiation is essential for the development of regenerative therapies. ESCs are commonly differentiated in vitro by spontaneously self‐assembling in suspension culture into 3D cell aggregates called embryoid bodies (EBs), which mimic many of the hallmarks of early embryonic development, yet the 3D organization and structure of EBs also presents unique challenges to effectively direct the differentiation of the cells. ESC differentiation is strongly influenced by physical and chemical signals comprising the local extracellular microenvironment, thus current methods to engineer EB differentiation have focused primarily on spatially controlling EB size, adding soluble factors to the media, or culturing EBs on or within natural or synthetic extracellular matrices. Although most such strategies aim to influence differentiation from the exterior of EBs, engineering the microenvironment directly within EBs enables new opportunities to efficiently direct the fate of the cells by locally controlling the presentation of morphogenic cues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Here, we show that spermine can induce the generation of a multi-layer muscle fiber sheet (MMFS) in mouse embryonic stem (ES) cells. ES cells were cultured by the hanging drop method and embryoid bodies (EBs) that formed after 2 days of culture were transferred to a 24-well dish (1 EB/well) containing differentiation medium. EBs cultured in the absence of spermine showed no evidence of differentiation of contractile muscle fibers. In contrast, the addition of spermine (0.5-1.0 mM) for 24 hr on day 12 of culture was found to result in the formation of contractile muscle fibers around the EBs by day 17, with further differentiation into MMFS by day 32. We found that spermine could only induce muscle cell differentiation in EBs during a limited period of culture. Moreover, high concentrations of spermine inhibited muscle fiber generation. Histochemical analysis showed that the MMFS induced by spermine had a heterogeneous architecture. Heart muscle cells appeared to be predominant in some regions, as evidenced by the expression of the markers atrial natriuretic peptide (ANP) and connexin 40 (Cx40), while skeletal muscle appeared to predominate in other regions, as indicated by the expression of MyoD. DNA array analysis showed specific enhancement of expression of muscle cell genes, supporting our conclusion that spermine induces differentiation of muscle cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号