首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee T  Marticke S  Sung C  Robinow S  Luo L 《Neuron》2000,28(3):807-818
Neuronal process remodeling occurs widely in the construction of both invertebrate and vertebrate nervous systems. During Drosophila metamorphosis, gamma neurons of the mushroom bodies (MBs), the center for olfactory learning in insects, undergo pruning of larval-specific dendrites and axons followed by outgrowth of adult-specific processes. To elucidate the underlying molecular mechanisms, we conducted a genetic mosaic screen and identified one ultraspiracle (usp) allele defective in larval process pruning. Consistent with the notion that USP forms a heterodimer with the ecdysone receptor (EcR), we found that the EcR-B1 isoform is specifically expressed in the MB gamma neurons, and is required for the pruning of larval processes. Surprisingly, most identified primary EcR/USP targets are dispensable for MB neuronal remodeling. Our study demonstrates cell-autonomous roles for EcR/USP in controlling neuronal remodeling, potentially through novel downstream targets.  相似文献   

2.
3.
During insect metamorphosis, the nervous system is extensively remodeled resulting in the development of new circuits that will execute adult-specific behaviors. The peripheral remodeling seen during development of innervation to the Dorsal Longitudinal (flight) Muscle (DLM) in Drosophila involves an initial retraction of larval neuromuscular junctions followed by adult-specific branch outgrowth. Subsequently, a phase of pruning occurs during which motor neuron branches are pruned back to reveal the stereotypic pattern of multiple contact points (or arbors) along the length of each DLM fiber. In this study, we show that the cell adhesion molecule, Fasciclin II (Fas II), is important for generating the stereotypic pattern. In Fas II hypomorphs, the number of contact points is increased, and the phenotype is rescued by targeted expression of Fas II in either synaptic partner. Arbor development has three distinct phases: outgrowth and elaboration, pruning and stabilization, and expansion of stabilized arbors. Fas II is expressed during the first two phases. A subset of branches is labeled during the elaboration phase, which is likely to initiate a stabilization pathway allowing branches to survive the pruning phase. However, since not all Fas II positive branches are retained, we propose that it primes branches for stabilization. Our data suggest that Fas II functions to restrict branch length and arbor expanse.  相似文献   

4.
Dramatic reorganization of dendrites and axonal terminals is a hallmark of neuronal remodeling during metamorphosis in the hawkmoth, Manduca sexta. The dendritic and axonal arbors of leg motor neurons regress in late larval stages, then regrow during adult development. Ecdysteroids, the insect steroids that trigger metamorphosis, control both regression and outgrowth in vivo and stimulate neuritic growth in cultured pupal leg motor neurons. To identify subcellular targets of ecdysteroid action in these neurons, we examined the dynamic and structural features of branching and their modulation by ecdysteroids in vitro. Delayed treatment of pupal leg motor neurons with ecdysteroid led to a robust enhancement of neuritic branch accumulation accompanied by a subtle effect on total neuritic length. Repeated imaging revealed that branch formation occurred almost exclusively at the growth cone; interstitial branching was extremely rare. Ecdysteroid treatment significantly enhanced both the formation and retention of branches at the growth cone. Branches formed via two distinct processes: engorgement (of fine protrusions) and condensation (of lamellae) with the relative contributions of these mechanisms being unaltered by ecdysteroid. Confocal imaging of the cytoskeleton demonstrated that growth cones consisted of microtubule-based domains fringed by actin-based filopodia. Treated growth cones were larger and displayed increased numbers of microtubule-based branches, whereas filopodial density was unaffected. These findings indicate that ecdysteroid enhances neuritic branching by altering growth cone structure and function, and suggest that hormonal modulation of cytoskeletal interactions contributes significantly to neuritic remodeling during metamorphosis.  相似文献   

5.
During metamorphosis in holometabolous insects, the nervous system undergoes dramatic remodeling as it transitions from its larval to its adult form. Many neurons are generated through post-embryonic neurogenesis to have adult-specific roles, but perhaps more striking is the dramatic remodeling that occurs to transition neurons from functioning in the larval to the adult nervous system. These neurons exhibit a remarkable degree of plasticity during this transition; many subsets undergo programmed cell death, others remodel their axonal and dendritic arbors extensively, whereas others undergo trans-differentiation to alter their terminal differentiation gene expression profiles. Yet other neurons appear to be developmentally frozen in an immature state throughout larval life, to be awakened at metamorphosis by a process we term temporally-tuned differentiation. These multiple forms of remodeling arise from subtype-specific responses to a single metamorphic trigger, ecdysone. Here, we discuss recent progress in Drosophila melanogaster that is shedding light on how subtype-specific programs of neuronal remodeling are generated during metamorphosis.  相似文献   

6.
The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post‐eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2–A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387–1416, 2016  相似文献   

7.
Neural circuits are often remodeled after initial connections are established. The mechanisms by which remodeling occurs, in particular whether and how synaptically connected neurons coordinate their reorganization, are poorly understood. In Drosophila, olfactory projection neurons (PNs) receive input by synapsing with olfactory receptor neurons in the antennal lobe and relay information to the mushroom body (MB) calyx and lateral horn. Here we show that embryonic-born PNs participate in both the larval and adult olfactory circuits. In the larva, these neurons generally innervate a single glomerulus in the antennal lobe and one or two glomerulus-like substructures in the MB calyx. They persist in the adult olfactory circuit and are prespecified by birth order to innervate a subset of glomeruli distinct from larval-born PNs. Developmental studies indicate that these neurons undergo stereotyped pruning of their dendrites and axon terminal branches locally during early metamorphosis. Electron microscopy analysis reveals that these PNs synapse with MB gamma neurons in the larval calyx and that these synaptic profiles are engulfed by glia during early metamorphosis. As with MB gamma neurons, PN pruning requires cell-autonomous reception of the nuclear hormone ecdysone. Thus, these synaptic partners are independently programmed to prune their dendrites and axons.  相似文献   

8.
In Drosophila, pulses of the steroid hormone ecdysone trigger larval molting and metamorphosis and coordinate aspects of embryonic development and adult reproduction. At each of these developmental stages, the ecdysone signal is thought to act through a heteromeric receptor composed of the EcR and USP nuclear receptor proteins. Mutations that inactivate all EcR protein isoforms (EcR-A, EcR-B1, and EcR-B2) are embryonic lethal, hindering analysis of EcR function during later development. Using transgenes in which a heat shock promoter drives expression of an EcR cDNA, we have employed temperature-dependent rescue of EcR null mutants to determine EcR requirements at later stages of development. Our results show that EcR is required for hatching, at each larval molt, and for the initiation of metamorphosis. In EcR mutants arrested prior to metamorphosis, expression of ecdysone-responsive genes is blocked and normal ecdysone responses of both imaginal and larval tissues are blocked at an early stage. These results show that EcR mediates ecdysone signaling at multiple developmental stages and implicate EcR in the reorganization of imaginal and larval tissues at the onset of metamorphosis.  相似文献   

9.
During metamorphosis, the insect nervous system must change to accomodate alterations in body form and behavior. Studies primarily on moths have shown that these changes involve the death of some larval neurons, the conservation and remodeling of others, and the maturation of new, adult-specific cells. The motor and sensory sides of the adult CNS vary in this regard with the former being constructed primarily from remodeled larval components, whereas the latter arises primarily from new neurons. Neuronal remodeling has received considerable attention. Larval-specific dendritic fields are pruned back during the larval–pupal transition, followed by the sprouting of adult-specific dendrites. Simple reflexes have been used to correlate these neuronal changes with the acquisition or loss of particular behaviors. The loss of the proleg retraction reflex is associated with the regression of the dendritic arbors of the proleg motoneurons. By contrast, expansion of axon arbors of the gin-trap afferents is necessary, but not sufficient, for the assembly of the gin-trap reflex in the pupal stage. The stretch receptor reflex provides a third example in which a new dendritic field in the adult form of a neuron is associated with new adult-specific connections. Interestingly, these connections are masked by persisting larval contacts until the emergence of the adult moth. For the metamorphosis of more complex behavioral circuits, some, such as that for flight behavior, seem to be assembled de novo, whereas others, like that for adult ecdysis behavior, show conservation of some circuit elements from the larval stage but with the superposition of some adult-specific components. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
During metamorphosis, the insect nervous system must change to accomodate alterations in body form and behavior. Studies primarily on moths have shown that these changes involve the death of some larval neurons, the conservation and remodeling of others, and the maturation of new, adult-specific cells. The motor and sensory sides of the adult CNS vary in this regard with the former being constructed primarily from remodeled larval components, whereas the latter arises primarily from new neurons. Neuronal remodeling has received considerable attention. Larval-specific dendritic fields are pruned back during the larval-pupal transition, followed by the sprouting of adult-specific dendrites. Simple reflexes have been used to correlate these neuronal changes with the acquisition or loss of particular behaviors. The loss of the proleg retraction reflex is associated with the regression of the dendritic arbors of the proleg motoneurons. By contrast, expansion of axon arbors of the gin-trap afferents is necessary, but not sufficient, for the assembly of the gin-trap reflex in the pupal stage. The stretch receptor reflex provides a third example in which a new dendritic field in the adult form of a neuron is associated with new adult-specific connections. Interestingly, these connections are masked by persisting larval contacts until the emergence of the adult moth. For the metamorphosis of more complex behavioral circuits, some, such as that for flight behavior, seem to be assembled de novo, whereas others, like that for adult ecdysis behavior, show conservation of some circuit elements from the larval stage but with the superposition of some adult-specific components.  相似文献   

11.
Metamorphosis is a fundamental developmental process and has been intensively studied for various neuron types of Drosophila melanogaster. However, detailed accounts of the fate of identified peptidergic neurons are rare. We have performed a detailed study of the larval morphology and pupal remodelling of identified peptidergic neurons, the CAPA-expressing Va neurons of D. melanogaster. In the larva, Va neurons innervate abdominal median and transverse nerves that are typically associated with perisympathetic organs (PSOs), major neurohaemal release sites in insects. Since median and transverse nerves are lacking in the adult, Va neurites have to undergo substantial remodelling during metamorphosis. We have examined the hitherto uncharacterised gross morphology of the thoracic PSOs and the abdominal median and transverse nerves by scanning electron microscopy and found that the complete reduction of these structures during metamorphosis starts around pupal stage P7 and is completed at P9. Concomitantly, neurite pruning of the Va neurons begins at P6 and is preceded by the high expression of the ecdysone receptor (EcR) subtype B1 in late L3 larvae and the first pupal stages. New neuritic outgrowth mainly occurs from P7-P9 and coincides with the expression of EcR-A, indicating that the remodelling of the Va neurons is under ecdysteroid control. Immunogold-labelling has located the CAPA peptides to large translucent vesicles, which are released from the transverse nerves, as suggested by fusion profiles. Hence, the transverse nerves may serve a neurohaemal function in D. melanogaster.This work was supported by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG), grant We 2652/2-1.  相似文献   

12.
13.
During the Drosophila life-cycle two sets of neuromuscular junctions are generated: the embryonic/larval NMJs develop during the first half, followed by the period of metamorphosis during which the adult counterpart is generated. Development of the adult innervation pattern is preceded by a withdrawal of larval NMJs, which occurs at the onset of metamorphosis, and is followed by adult-specific motor neuron outgrowth to innervate the newly developing adult fibers. Establishment of the adult innervation pattern occurs in the context of a broader restructuring of the nervous system, which results in the development of neural circuits that are necessary to carry out behaviors specific to the adult. In this article, we follow development of the dorsal longitudinal muscle (DLM) innervation pattern through metamorphosis. We find that the initial period of motor neuron elaboration is followed by a phase of extensive pruning resulting in a threefold reduction of neuromuscular contacts. This event establishes the adult pattern of second order branching. Subsequent higher order branching from the second order "contact" points generates the characteristic multiterminal innervation pattern of the DLMs. Boutons begin to appear after the pruning phase, and are much smaller than their larval counterparts. Additionally, we demonstrate that the DLM innervation is altered in the hyperexcitable double mutant, ether a go-go Shaker, and that the phenotype is suppressed by the hypoexcitable mutant, nap(ts1). Our results demonstrate that electrical activity regulates the patterning of DLM innervation during metamorphosis.  相似文献   

14.
15.
16.
Metamorphosis of the central nervous system of Drosophila   总被引:2,自引:0,他引:2  
The study of the metamorphosis of the central nervous system of Drosophila focused on the ventral CNS. Many larval neurons are conserved through metamorphosis but they show pronounced remodeling of both central and peripheral processes. In general, transmitter expression appears to be conserved through metamorphosis but there are some examples of possible changes. Large numbers of new, adult-specific neurons are added to this basic complement of persisting larval cells. These cells are produced during larval life by embryonic neuroblasts that had persisted into the larval stage. These new neurons arrest their development soon after their birth but then mature into functional neurons during metamorphosis. Programmed cell death is also important for sculpting the adult CNS. One round of cell death occurs shortly after pupariation and a second one after the emergence of the adult fly.  相似文献   

17.
Zheng X  Zugates CT  Lu Z  Shi L  Bai JM  Lee T 《The EMBO journal》2006,25(3):615-627
The intermingling of larval functional neurons with adult-specific neurons during metamorphosis contributes to the development of the adult Drosophila brain. To better understand this process, we characterized the development of a dorsal cluster (DC) of Atonal-positive neurons that are born at early larval stages but do not undergo extensive morphogenesis until pupal formation. We found that Baboon(Babo)/dSmad2-mediated TGF-beta signaling, known to be essential for remodeling of larval functional neurons, is also indispensable for proper morphogenesis of these adult-specific neurons. Mosaic analysis reveals slowed development of mutant DC neurons, as evidenced by delays in both neuronal morphogenesis and atonal expression. We observe similar phenomena in other adult-specific neurons. We further demonstrate that Babo/dSmad2 operates autonomously in individual neurons and specifically during the late larval stage. Our results suggest that Babo/dSmad2 signaling prior to metamorphosis may be widely required to prepare neurons for the dynamic environment present during metamorphosis.  相似文献   

18.
19.
Pulses of the steroid hormone ecdysone activate genetic regulatory hierarchies that coordinate the developmental changes associated with Drosophila metamorphosis. A high-titer ecdysone pulse at the end of larval development triggers puparium formation and induces expression of the DHR3 orphan nuclear receptor. Here we use both a heat-inducible DHR3 rescue construct and clonal analysis to define DHR3 functions during metamorphosis. Clonal analysis reveals requirements for DHR3 in the development of adult bristles, wings, and cuticle, and no apparent function in eye or leg development. DHR3 mutants rescued to the third larval instar also reveal essential functions during the onset of metamorphosis, leading to lethality during prepupal and early pupal stages. The phenotypes associated with these lethal phases are consistent with the effects of DHR3 mutations on ecdysone-regulated gene expression. Although DHR3 has been shown to be sufficient for early gene repression at puparium formation, it is not necessary for this response, indicating that other negative regulators may contribute to this pathway. In contrast, DHR3 is required for maximal expression of the midprepupal regulatory genes, EcR, E74B, and betaFTZ-1. Reductions in EcR and betaFTZ-F1 expression, in turn, lead to submaximal early gene induction in response to the prepupal ecdysone pulse and corresponding defects in adult head eversion and salivary gland cell death. These studies demonstrate that DHR3 is an essential regulator of the betaFTZ-F1 midprepupal competence factor, providing a functional link between the late larval and prepupal responses to ecdysone. Induction of DHR3 in early prepupae ensures that responses to the prepupal ecdysone pulse will be distinct from responses to the late larval pulse and thus that the animal progresses in an appropriate manner through the early stages of metamorphosis.  相似文献   

20.
The processing of odorant signals is performed, in the olfactory bulb of vertebrates or in the antennal lobe of insects, by different types of neurons which display specific morphological and functional features. The present work characterizes the morphogenesis of the main neuronal types which participate in olfactory discrimination in the adult honeybee (Apis mellifera). Neurons were stained intracellularly with Lucifer yellow at different stages of pupal development and in the adult, and imaged by laser scanning confocal microscopy. Attending to branching patterns, all pupal neurons could be attributed to morphological types previously established in the adult. Given the functional importance of intraglomerular dendritic arbors in the processing of olfactory information, the study focused on their development. The two main classes, dense and sparse intraglomerular arbors, display adultlike features as early as the second day of pupal development. However, morphometric measurements and confocal observations show that their general pattern undergoes continuous maturation processes until late pupal stages and after emergence of the adult. Among these, the results point out a pruning of dendritic branches in sparse arbors, but not in dense arbors. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 461–474, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号