首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted on the kinetics of enzymatic hydrolysis of pure insoluble cellulose using unpurified culture filtrate Trichoderma reesei, with the emphasis on the initial reaction period. The initial hydrolysis rate and extent of enzyme (soluble protein)adsorption, either apparent or initial, were evaluated under various experimental conditions. It has been found that the various mass-transfer steps do not control the overall hydrolysis rate and that the hydrolysis rate is mainly controlled by the surface reaction step promoted by the adsorbed enzyme. It has also been found that the initial hydrolysis rate strongly depends on the initial extent of soluble protein adsorption and the effectiveness of the adsorbed soluble protein to promote the hydrolysis. The initial extent of soluble protein adsorption, in turn, is related to the initial cellulose concentration, enzyme concentration, and specific surface area of cellulose, whereas the effectiveness of the initially adsorbed soluble protein to promote the derived to interrelate these parameters without resorting to the Michaelis-Menten kinetics. The present result appear to imply that the role of enzyme-substrate complex formation should not be ignored in deriving a mechanistic kinetic model for enzymatic hydrolysis of cellulose.  相似文献   

2.
A kinetic model incorporating dynamic adsorption, enzymatic hydrolysis, and product inhibition was developed for enzymatic hydrolysis of differently pretreated fibers from a nitrogen-rich lignocellulosic material-dairy manure. The effects of manure proteins on the enzyme adsorption profile during hydrolysis have been discussed. Enzyme activity, instead of protein concentration, was used to describe the enzymatic hydrolysis in order to avoid the effect of manure protein on enzyme protein analysis. Dynamic enzyme adsorption was modeled based on a Langmiur-type isotherm. A first-order reaction was applied to model the hydrolysis with consideration being given for the product inhibition. The model satisfactorily predicted the behaviors of enzyme adsorption, hydrolysis, and product inhibition for all five sample manure fibers. The reaction conditions were the substrate concentrations of 10-50 g/L, enzyme loadings of 7-150 FPU/g total substrate, and the reaction temperature of 50 degrees C.  相似文献   

3.
Many proteases are available for the hydrolysis of various protein substrates. The qualitative effect of most experimental variables on reaction progress is known, so it is possible to devise a rational procedure for selecting the best enzyme. Reaction time and enzyme concentration should be chosen in the region where they have little effect on reaction progress. Substrate concentration should be low to avoid possible product inhibition. Each enzyme should be tested at its optimum pH, and at a range of temperatures around (mainly below) the reported temperature optimum. Enzyme cost and other relevant factors should also be considered in the enzyme selection. Using this selection procedure Alcalase was chosen as the most appropriate enzyme for solubilizing lean beef tissue.  相似文献   

4.
Enzymatic hydrolysis of insoluble amorphous cellulose by Trichoderma viride cellulase was investigated in a batch reactor at several substrate concentrations and three enzyme levels. The reactions were carried out at 50 degrees C and pH 4.8. Enzyme was rapidly adsorbed onto solids on contact, then gradually returned to the liquid phase as the reaction proceeded. A kinetic model that considered the fast adsorption which was followed by the slow reaction, and subsequent product inhibition was developed to interpret the experimental observations. The resulting equation successfully correlated the data for up to 70% conversion. The methods for determining the kinetic parameters are discussed.  相似文献   

5.
6.
A mathematical treatment of a two-sited, modification-induced protein unfolding model is presented, and it is shown that the dependence of the concentration of modified protein groups on reaction time is described by a linear, second-order, differential equation with nonzero right hand side. The analytic solution of this equation consists of a summation of exponential functions of reaction time. By assigning arbitrary values to the modification and isomerization rate constants of these equations, simulated cases of protein modification are presented, and the apparent end-point of the reaction is determined graphically. It is found that the apparent end-point of the reaction is, in most cases studied, different from the true value of two groups modified per protein molecule, and is a function of both the modification, and isomerization rate constants of the model. The first derivative of the protein modification reaction, at the start of the reaction, [E]'mod (0), is determined, for the same simulated cases of protein modification, by two different analytical methods. It is found that the [E]'mod(0) value, obtained from graphical and numerical analysis data, is in most cases in good agreement with the value expected from first principles. Finally, the different irreversible enzyme inhibition forms, contingent upon the different kinds of the enzyme inactivation-protein modification relationships of the protein modification model under consideration, are presented and discussed.  相似文献   

7.
Pretreatment of cellulose with an industrial cellulosic solvent, N-methylmorpholine-N-oxide, showed promising results in increasing the rate of subsequent enzymatic hydrolysis. Cotton linter was used as high crystalline cellulose. After the pretreatment, the cellulose was almost completely hydrolyzed in less than 12 h, using low enzyme loading (15 FPU/g cellulose). The pretreatment significantly decreased the total crystallinity of cellulose from 7.1 to 3.3, and drastically increased the enzyme adsorption capacity of cellulose by approximately 42 times. A semi-mechanistic model was used to describe the relationship between the cellulose concentration and the enzyme loading. In this model, two reactions for heterogeneous reaction of cellulose to glucose and cellobiose, and a homogenous reaction for cellobiose conversion to glucose was incorporated. The Langmuir model was applied to model the adsorption of cellulase onto the treated cellulose. The competitive inhibition was also considered for the effects of sugar inhibition on the rate of enzymatic hydrolysis. The kinetic parameters of the model were estimated by experimental results and evaluated.  相似文献   

8.
An amperometric biosensor for the detection of cellobiose has been introduced to study the kinetics of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase. By use of a sensor in which pyrroloquinoline quinone-dependent glucose dehydrogenase was immobilized on the surface of electrode, direct and continuous observation of the hydrolysis can be achieved even in a thick cellulose suspension. The steady-state rate of the hydrolysis increased with increasing concentrations of the enzyme to approach a saturation value and was proportional to the amount of the substrate. The experimental results can be explained well by the rate equations derived from a three-step mechanism consisting of the adsorption of the free enzyme onto the surface of the substrate, the reaction of the adsorbed enzyme with the substrate, and the liberation of the product. The catalytic constant of the adsorbed enzyme was determined to be 0.044+/-0.011s(-1).  相似文献   

9.
Two fractions of substrate in microcrystalline cellulose which differ in their adsorption capacities for the cellulases and their susceptibility to enzymatic attack have been identified. On the basis of a two-substrate hypothesis, mathematical models to describe enzyme adsorption and the kinetics of hydrolysis have been derived. A new nonequilibrium approach was chosen to predict cellulase-cellulose adsorption. A maximum binding capacity of 76 mg protein per gram substrate and a half-maximum saturation constant of 26 filter paper units (FPU) per gram substrate have been calculated, and a linear relationship of hydrolysis rate vs. adsorbed protein has been found. The fraction of substrate more easily hydrolyzed, as calculated from hydrolysis data, represents 19% of the total effective substrate concentration. This fraction is only slightly different from that of other celluloses and has been estimated to be 27% and 30% for NaOH- and H(3)PO(4)-swollen cellulose, respectively. The effective substrate concentration is equal to the maximum amount of the substrate which can be converted during exhaustive hydrolysis. This in turn is determined by the overall degradability of the substrate by the cellulases (85-90% for microcrystalline cellulose) and by the cellobiose concentration during hydrolysis. The kinetic model is based on a summation of two integrated first-order reactions with respect to the effective substrate concentration. Furthermore, it includes the principal factors influencing the reaction rates: the ratio of filter paper and beta-glucosidase units per gram substrate and the initial substrate concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
The hydrolysis of maltodextrins (10 DE) by glucoamylase was studied in a batch reactor at temperatures between 40 and 80 degrees C and substrate concentration range from 17 to 300 kg/m(-3). The experimental data were fitted to a model including thermal deactivation of the enzyme. In the model, the reaction rate was correlated with an extended Michaelis-Menten equation including inhibition by product, and the thermal deactivation of glucoamylase was fitted with a first-order reaction. The dependence of rate parameters on temperature was correlated using the Arrhenius equation. The differential equation of the model was integrated and the optimal enzyme demand and temperature were determined for isothermal operation.  相似文献   

11.
The effects of water on enzyme (protein) hydration and catalytic efficiency of enzyme molecules in organic solvents have been analyzed in terms of the thermodynamic activity of water, which has been estimated by the NRTL or UNIFAC equations. When the amount of water bound to the enzyme was plotted as a function of water activity, the water adsorption isotherms obtained from the water-solvent liquid mixtures were similar to the reported water-vapor adsorption isotherms of proteins. The water adsorption of proteins from the organic media was not significantly dependent on the properties of the solvents or the nature of the proteins. It is also shown that there is a linear relationship between the logarithm of the enzyme reaction rate and water activity. However, the dependence of the enzyme reaction rate on water activity was found to be different depending on the properties of the solvent. The relationship between water activity and other solvent parameters such as solvent hydrophobicity and the solubility of water in the solvent is also discussed.  相似文献   

12.
The kinetics of enzymatic hydrolysis of pure insoluble cellulose by means of unpurified culture filtrate of Trichoderma reesei was studied, emphasizing the kinetic characteristics associated with the extended hydrolysis times. The changes in the hydrolysis rate and extent of soluble protein adsorption during the progress of reaction, either apparent or intrinsic, were investigated. The hydrolysis rate declined drastically during the initial hours of hydrolysis. The factors causing the reduction in the hydrolysis rate were examined; these include the transformation of cellulose into a less digestible form and product inhibition. The structural transformation can be partially explained by changes in the crystallinity index and surface area. The product inhibition was caused by the deactivation of the adsorbed soluble protein by the products, which essentially represents the so-called "un-competitive" inhibition. The kinetics of beta-glucosidase were also studied. The result has shown that the action of beta-glucosidase is competitively inhibited by glucose. It has been found that the integrated form of the initial rate expression cannot be used in predicting the progress of reaction because the digestibility of cellulose changes drastically as the hydrolysis proceeds, and that the rate expression for enzymatic hydrolysis of cellulose cannot be simplified or approximated by resorting to the pseudo-steady-state assumption. A mechanistic kinetic model of cellulose hydrolysis should include the following major influencing factors: (1)mode of action of enzyme, (2) structure of cellulose, and (3) mode of interaction between the enzyme and cellulose molecules.  相似文献   

13.
Amino acid production from a sunflower wholemeal protein concentrate   总被引:1,自引:0,他引:1  
A study was undertaken to investigate the influence of protein concentration and the addition of different doses of endopeptidase (Alcalase) and exopeptidase (Flavourzyme) on the sequential enzymatic hydrolysis of a protein concentrate obtained from defatted sunflower wholemeal. The results show that the greatest degree of hydrolysis (37.8%) is achieved by hydrolyzing an aqueous substrate with a 5% protein concentrate, and using a 0.02 g Alcalase/g of protein concentrate of the substrate. The aminograms performed reveal that the free amino acid found in the highest proportion in the hydrolysate was aspartic acid, which accounted for over 50% of the free amino acids present, regardless of the substrate concentration and the enzyme dosage used. Finally, the hydrolysate obtained from a substrate containing a 5% protein concentrate and a 0.02 g Alcalase/g of protein concentrate displayed characteristics that indicate its suitability for use as a vegetable-origin plant growth regulator.  相似文献   

14.
In order to learn whether the kinetics of transient phosphorylation of sodium plus potassium ion transport adenosine triphosphatase was compatible with the hydrolysis of ATP, computer simulation of experimental data was studied. The enzyme mechanism was described in terms of first order and pseudo-first order reactions. The resulting system of linear first order differential equations was solved by a Runge-Kutta method. Phosphorylation kinetics was studied by means of a rapid mixing apparatus at 21 degrees in the presence of 100 micron ATP, 3 mM MgCl2, 120 mM NaCl, and 10 mM KCl. Computer simulation gave a close fit to experimental data with a model of the reaction mechanism which included a sequence of two dephospho forms and two phospho forms of the enzyme. With this model, rate constants obtained by computer simulation were in agreement with constants which had been determined in separate phosphorylation and dephosphorylation experiments. Within experimental limits, the net flux of reaction in each partial step was compatible with the (Na+,K+)-stimulated hydrolysis of ATP (about 324 and 300 nmol-mg-1-min-1, respectively).  相似文献   

15.
In view of the biochemical reaction catalyzed by enzyme powder suspended in a water-insoluble organic solvent, an equation was derived to estimate the amount of water bound to the enzyme powder. With this equation, an apparent adsorption isotherm between free water (water freely dissolved in benzene) and bound water (water bound to crude lipase powder of Pseudomonas fluorescens) was obtained. A direct lactonization reaction (synthesis of cyclopentadenolide from 15-hydroxypen-tadecanoic acid) catalyzed by crude lipase powder of Pseudomonas fluorescens was carried out batchwise in microaqueous benzene at 40oC. A kinetic model of the enzymatic reversible lactonization reaction was derived, from which the effect of moisture content on the initial reaction rate with a fully hydrated enzyme was mathematically expressed. The observed initial reaction rate first increased, then decreased with increasing moisture content, giving rise to the maximum rate at a certain level of the moisture content. The drop in the reaction rate at lower moisture content was due to a lesser hydration of the enzyme molecule (hydration-limited) and the decrease in the reaction rate at higher moisture content was attributed to the dependence of the true initial rate of the reversible reaction on the moisture content (true reversible reaction limited), and could be simulated by the kinetic model. The equilibrium yield approached 100% at a lower moisture content.  相似文献   

16.
Some studies have carried out in order to retrieve proteins from the by-product of animal-processing industries. Earthworms are rich in protein and usually are used in animal feed. Thus, this study aimed to optimize the hydrolysis process of Eisenia andrei earthworms by employing Alcalase enzyme. Using the response surface methodology, we evaluated the following conditions: temperature, hydrolysis time, stirring speed, and enzyme/substrate ratio. The optimal conditions for the experimental design were determined through the analysis of the foaming and emulsifying properties, in vitro starch digestibility, and antioxidant activity. The results demonstrate that the highest degree of hydrolysis (i.e., 92%) was obtained under the following conditions: pH, 9.5; temperature, 25?°C; hydrolysis time, 2.25?h; stirring speed, 200?rpm; and enzyme/substrate ratio, 1.77%, using Alcalase enzyme. Evaluation of the amino acid composition under these conditions revealed higher concentrations of aspartic acid, glutamic acid, and leucine. The in vitro protein digestibility of the hydrolysate was approximately 73%. There were no significant improvements in either foam stability or emulsification after enzymatic hydrolysis. Additional studies on the antioxidant activity are required. This bioproduct could potentially serve as a promising supplementary food product.  相似文献   

17.
Abstract

Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was studied. To what extent immobilization of both or either CalB or Alcalase onto macroporous beads helps to prevent hydrolysis of CalB by Alcalase was evaluated. The rate of activity loss of native and immobilized CalB in the absence and presence of native and immobilized Alcalase was calculated from the rate of triacetin hydrolysis. Immobilization of both or either CalB or Alcalase onto macroporous beads was found to be effective in largely preventing hydrolysis of CalB by Alcalase.  相似文献   

18.
实验采用DA201-C型大孔吸附树脂对Alcalase蛋白酶水解鹿茸血3 h的水解液进行吸附,采用25%、50%、75%、100%乙醇分级洗脱,收集各组分进行氨基酸组成分析,发现各洗脱组分具有不同疏水性值,同时测定各组分的血管紧张素转化酶(ACE)抑制活性和二苯代苦味肼基自由基(DPPH·)清除活性:75%乙醇洗脱组分的ACE抑制活性最高,为54.71%,且ACE抑制活性与组分疏水性值显著相关;100%乙醇洗脱组分的DPPH清除率最高.  相似文献   

19.
The adsorption of cellulase on cellulose and a lignacious residue was examined by using cellulase from Trichoderma reesei, hardwood pretreated by dilute sulfuric acid under high pressure, and a lignacious residue prepared by a complete enzymatic hydrolysis of the pretreated wood. A significant amount of cellulase was found to adsorb on the lignacious residue during the hydrolysis of the pretreated wood. Hence, the adsorption of enzyme on the lignacious residue as well as cellulose must be taken into account in the development of the hydrolysis kinetics. It was found that the adsorption of enzyme on cellulose and on the lignacious residue could be represented by Langmuir type isotherms. The data show that the pretreatment at a higher temperature results in more enzyme adsorption on the cellulose fraction and less on the lignacious residue fraction. The relationship between the hydrolysis rate and the amount of enzyme adsorbed is discussed.  相似文献   

20.
Peptide libraries generated using phage display have been widely applied to proteolytic enzymes for substrate selection and optimization, but the reaction kinetics between the enzyme and substrate phage are not well understood. Using a quantitative ELISA assay to monitor the disappearance of substrate, we have been able to follow the course of reaction between stromelysin, a metalloprotease, and its substrate phage. We found that under the proteolytic conditions where the enzyme was present in nanomolar concentration or higher, in excess over the substrate, the proteolysis of substrate phage was a single exponential event and the observed rate linear with respect to enzyme concentration. The enzyme concentration dependence could be described by pseudo first-order kinetic equations. Our data suggest that substrate binding is slow relative to the subsequent hydrolysis step, implying that the phage display selection process enriches clones that have high binding affinity to the protease, and the selection may not discriminate those of different chemical reactivity toward the enzyme. Considering that multiple substrate molecules may be present on a single phage particle, we regard the substrate phage reaction kinetic model as empirical. The validity of the model was ascertained when we successfully applied it to determine the binding affinity of a competitive inhibitor of stromelysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号