首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As eukaryotic microbial life, ciliated protozoan may be found actively growing in some extreme condition where there is a sufficient energy source to sustain it because they are exceedingly adaptable and not notably less adaptable than the prokaryotes. However, a crucial problem in the study of ciliates in extreme environments is the lack of reliable cultivation techniques. To our knowledge, only a tiny fraction of ciliates can be cultured in the laboratory, even for a very limited period, which can partly explain the paucity of our understanding about ciliates diversity in various extremes although the interest in the biodiversity of extremophiles increased significantly during the past three decades. This mini‐review aims to compile the knowledge of several groups of free‐living ciliates that can be microscopically observed in extreme environmental samples, although most habitats have not been sufficiently well explored for sound generalizations.  相似文献   

2.
Our planet offers many opportunities for life on the edge: high and low temperatures, high salt concentrations, acidic and basic conditions and toxic environments, to name but a few extremes. Recent studies have revealed the diversity of fungi that can occur in stressful environments that are hostile to most eukaryotes. We review these studies here, with the additional purpose of proposing some mechanisms that would allow for the evolutionary adaptation of eukaryotic microbial life under extreme conditions. We focus, in particular, on life in ice and life at high salt concentrations, as there is a surprising similarity between the fungal populations in these two kinds of environments, both of which are characterized by low water activity. We propose steps of evolution of generalist species towards the development of specialists in extreme habitats. We argue that traits present in some fungal groups, such as asexuality, synthesis of melanin-like pigments and a flexible morphology, are preadaptations that facilitate persistence and eventual adaptation to conditions on the ecological edge, as well as biotope switches. These processes are important for understanding the evolution of extremophiles; moreover, they have implications for the emergence of novel fungal pathogens.  相似文献   

3.
Entamoeba histolytica andGiardia lamblia are microaerophilic protists, which have long been considered models of ancient pre-mitochondriate eukaryotes. As transitional eukaryotes, amoebae and giardia appeared to lack organelles of higher eukaryotes and to depend upon energy metabolism appropriate for anaerobic conditions early in the history of the planet. However, our studies have shown that amoebae and giardia contain splicoeosomal introns, ras-family signal-transduction proteins, ATP-binding casettes (ABC)-family drug transporters, Golgi, and a mitochondrion-derived organelle (amoebae only). These results suggest that most of the organelles of higher eukaryotes were present in the common ancestor of all eukaryotes, and so dispute the notion of transitional eukaryotic forms. In addition, phylogenetic studies suggest many of the genes encoding the fermentation enzymes of amoebae and giardia derive from prokaryotes by lateral gene transfer (LGT). While LGT has recently been shown to be an important determinant of prokaryotic evolution, this is the first time that LGT has been shown to be an important determinant of eukaryotic evolution. Further, amoebae contain cyst wall-associated lectins, which resemble, but are distinct from lectins in the walls of insects (convergent evolution). Giardia have a novel microtubule-associated structure which tethers together pairs of nuclei during cell division. It appears then that amoebae and giardia tell us less about the origins of eukaryotes and more about the origins of eukaryotic diversity.  相似文献   

4.
Many microbial genomes have been sequenced in the recent years. Multiple genes encoding Rieske iron-sulfur proteins, which are subunits of cytochrome bc-type complexes or oxygenases, have been detected in many pro- and eukaryotic genomes. The diversity of substrates, co-substrates and reactions offers obvious explanations for the diversity of the low potential Rieske proteins associated with oxygenases, but the physiological significance of the multiple genes encoding high potential Rieske proteins associated with the cytochrome bc-type complexes remains elusive. For some organisms, investigations into the function of the later group of genes have been initiated. Here, we summarize recent finding on the characteristics and physiological functions of multiple high potential Rieske proteins in prokaryotes. We suggest that the existence of multiple high potential Rieske proteins in prokaryotes could be one way of allowing an organism to adapt their electron transfer chains to changing environmental conditions.  相似文献   

5.
According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers1, 2 present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveal that eukaryotic actin and the bacterialhomolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.  相似文献   

6.
The Precambrian is the cradle of life. With a time span of about 4 Billion years it represents the largest part of earth history. Life changed the planet during the Precambrian by a lot of interactions with plate tectonics and raised into better qualities. A special milestone was the release of free oxygen by the stromatolithes at about 2.5 Billion years. An extreme bottleneck for the evolution of life was the Snowball Earth representing the freezing of the entire earth surface and the covering by an ice sheet. Plate tectonic processes were responsible for the melting of the ice sheet. In the aftermath of that glaciation the rapid radiation of the first complex higher life forms begun. These were represented by the so‐called Ediacara Biota, which occurred in the time span of about 630 and 543 Million years before today. The Ediacara Biota are unique in the evolution of life and existed in a close interaction with a leather‐like biomat at the sea‐floor which provided stability, hide and food. Among the Ediacara Biota the first primitive arthropods, the molluscs and the anthozoans occurred. In addition, in the fossil record are reported a lot of mystic life forms without a good or any classification. The Ediacara Biota represent the critical evolutionary step to pave the way for the explosion‐like radiation of life during the Cambrian that started at 542 Million years before present.  相似文献   

7.
The small size, ubiquity, metabolic versatility and flexibility, and genetic plasticity (horizontal transfer) of microbes allow them to tolerate and quickly adapt to unfavorable and/or changing environmental conditions. Prokaryotes are endowed with sophisticated cellular envelopes that contain molecules not found elsewhere in the biological world. Although prokaryotic cells lack the organelles that characterize their eukaryotic counterparts, their interiors are surprisingly complex. Prokaryotes sense their environment and respond as individual cells to specific environmental challenges; but prokaryotes also act cooperatively, displaying communal activities. In many microbial ecosystems, the functionally active unit is not a single species or population (clonal descendence of the same bacterium) but a consortium of two or more types of cells living in close symbiotic association. Only recently have we become aware that microbes are the basis for the functioning of the biosphere. Thus, we are at a unique time in the history of science, in which the interaction of technological advances and the exponential growth in our knowledge of the present microbial diversity will lead to significant advances not only in microbiology but also in biology and other sciences in general.  相似文献   

8.
人类对自然环境中约99%的微生物不能用传统的方法进行纯培养,对于极端环境中的微生物更是知之甚少.随着宏基因组技术的出现,人们可对选一庞大的未知世界进行多方面研究.目前研究者利用这一技术已经对地球上的多种极端生境进行了研究,并取得了很多新的成就.简要概述这一技术在极端环境未培养微生物研究中的应用.  相似文献   

9.
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. No energy, no evolution. The ‘modern synthesis’ of the past century explained evolution in terms of genes, but this is only part of the story. While the mechanisms of natural selection are correct, and increasingly well understood, they do little to explain the actual trajectories taken by life on Earth. From a cosmic perspective—what is the probability of life elsewhere in the Universe, and what are its probable traits?—a gene-based view of evolution says almost nothing. Irresistible geological and environmental changes affected eukaryotes and prokaryotes in very different ways, ones that do not relate to specific genes or niches. Questions such as the early emergence of life, the morphological and genomic constraints on prokaryotes, the singular origin of eukaryotes, and the unique and perplexing traits shared by all eukaryotes but not found in any prokaryote, are instead illuminated by bioenergetics. If nothing in biology makes sense except in the light of evolution, nothing in evolution makes sense except in the light of energetics. This Special Issue of Philosophical Transactions examines the interplay between energy transduction and genome function in the major transitions of evolution, with implications ranging from planetary habitability to human health. We hope that these papers will contribute to a new evolutionary synthesis of energetics and genetics.  相似文献   

10.
The global landscape of sequence diversity   总被引:1,自引:1,他引:0       下载免费PDF全文

Background  

Systematic comparisons between genomic sequence datasets have revealed a wide spectrum of sequence specificity from sequences that are highly conserved to those that are specific to individual species. Due to the limited number of fully sequenced eukaryotic genomes, analyses of this spectrum have largely focused on prokaryotes. Combining existing genomic datasets with the partial genomes of 193 eukaryotes derived from collections of expressed sequence tags, we performed a quantitative analysis of the sequence specificity spectrum to provide a global view of the origins and extent of sequence diversity across the three domains of life.  相似文献   

11.
Archaeal habitats--from the extreme to the ordinary   总被引:2,自引:0,他引:2  
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.  相似文献   

12.
We present evidence that eukaryotic life has existed in an extreme environment, inside the oceanic crust. Up to now only prokaryotes have been discovered within deep marine sediments and glass-rims of pillow basalts, no higher life forms are described as yet. This study demonstrates unique filamentous fossil structures observed within carbonate-filled vesicles of a massive lava flow unit from the upper oceanic crust in the North Pacific (ODP Site 1224). Based on morphological traits including branching, septa and central pores, the filaments are interpreted as fungi. The chemical composition of the fungal structures differs from the surrounding crystalline carbonate matrix in the deep basaltic rocks. Small open space between the fungi and the carbonate cement and undisturbed filamentous growth through different calcite crystals indicate endolithic fungal growth after the calcium carbonate filling. The presence of euhedral pyrite crystals within the carbonate cements points out anaerobic conditions in this habitat. Our results provide for the first time evidence for eukaryotic, fungal life in deep ocean basaltic rocks.  相似文献   

13.
The origins of eukaryotic gene structure   总被引:17,自引:0,他引:17  
Most of the phenotypic diversity that we perceive in the natural world is directly attributable to the peculiar structure of the eukaryotic gene, which harbors numerous embellishments relative to the situation in prokaryotes. The most profound changes include introns that must be spliced out of precursor mRNAs, transcribed but untranslated leader and trailer sequences (untranslated regions), modular regulatory elements that drive patterns of gene expression, and expansive intergenic regions that harbor additional diffuse control mechanisms. Explaining the origins of these features is difficult because they each impose an intrinsic disadvantage by increasing the genic mutation rate to defective alleles. To address these issues, a general hypothesis for the emergence of eukaryotic gene structure is provided here. Extensive information on absolute population sizes, recombination rates, and mutation rates strongly supports the view that eukaryotes have reduced genetic effective population sizes relative to prokaryotes, with especially extreme reductions being the rule in multicellular lineages. The resultant increase in the power of random genetic drift appears to be sufficient to overwhelm the weak mutational disadvantages associated with most novel aspects of the eukaryotic gene, supporting the idea that most such changes are simple outcomes of semi-neutral processes rather than direct products of natural selection. However, by establishing an essentially permanent change in the population-genetic environment permissive to the genome-wide repatterning of gene structure, the eukaryotic condition also promoted a reliable resource from which natural selection could secondarily build novel forms of organismal complexity. Under this hypothesis, arguments based on molecular, cellular, and/or physiological constraints are insufficient to explain the disparities in gene, genomic, and phenotypic complexity between prokaryotes and eukaryotes.  相似文献   

14.
Post-Viking Microbiology: New Approaches,New Data,New Insights   总被引:1,自引:0,他引:1  
In the 20 years since the Viking experiments, major advances have been made in the areas of microbial systematics, microbial metabolism, microbial survival capacity, and the definition of environments on earth, suggesting that life is more versatile and tenacious than was previously appreciated. Almost all niches on earth which have available energy, and which are compatible with the chemistry of carbon-carbon bonds, are known to be inhabited by bacteria. The oldest known bacteria on earth apparently evolved soon after the formation of the planet, and are heat loving, hydrogen and/or sulfur metabolizing forms. Among the two microbial domains (kingdoms) is a great deal of metabolic diversity, with members of these forms being able to grow on almost any known energy source, organic or inorganic, and to utilize an impressive array of electron acceptors for anaerobic respiration. Both hydrothermal environments and the deep subsurface environments have been shown to support large populations of bacteria, growing on energy supplied by geothermal energy, thus isolating these ecosystems from the rest of the global biogeochemical cycles. This knowledge, coupled with new insights into the history of the solar system, allow one to speculate on possible evolution and survival of life forms on Mars.  相似文献   

15.
16.
Michael WM 《Current biology : CB》2001,11(11):R443-R445
Checkpoints have been a staple of eukaryotic cell cycle research for the past decade, but little is known about checkpoints in prokaryotes. New work on sporulation in Bacillus fills that gap by showing that such control systems function to coordinate aspects of the bacterial cell cycle.  相似文献   

17.
It has been postulated that life originated in a similar environment to those of deep sea hydrothermal vents. These environments are located along volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pressure), chemical toxicity, and absence of photosynthesis. However, numerous living organisms have been discovered in these hostile environments, including a variety of microorganisms and many animal species which live in intimate and complex symbioses with sulfo-oxidizing and methanotrophic bacteria. Recent proteomic analyses of the endosymbiont ofRiftia pachyptila and genome sequences of some free living and symbiotic bacteria have provided complementary information about the potential metabolic and genomic capacities of these organisms. The evolution of these adaptive strategies is connected with different mechanisms of genetic adaptation including horizontal gene transfer and . various structural and functional mutations. Therefore, the organisms in this environment are good models for studying the evolution of prokaryotes and eukaryotes as well as different aspects of the biology of adaptation. This review describes some current research concerning metabolic and plausible genetic adaptations of organisms in a deep sea environment, usingRiftia pachyptila as model.  相似文献   

18.
There are ∼1.4 million organisms on this planet that have been described morphologically but there is no comparable coverage of biodiversity at the molecular level. Little more than 1% of the known species have been subject to any molecular scrutiny and eukaryotic genome projects have focused on a group of closely related model organisms. The past year, however, has seen an ∼80% increase in the number of species represented in sequence databases and the completion of the sequencing of three prokaryotic genomes. Large-scale sequencing projects seem set to begin coverage of a wider range of the eukaryotic diversity, including green plants, microsporidians and diplomonads.  相似文献   

19.
Contributions of Microorganisms to Industrial Biology   总被引:1,自引:0,他引:1  
Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.  相似文献   

20.
The Proterozoic History and Present State of Cyanobacteria   总被引:1,自引:0,他引:1  
Sergeev  V. N.  Gerasimenko  L. M.  Zavarzin  G. A. 《Microbiology》2002,71(6):623-637
The paper delves into the main regularities of the distribution of fossil microorganisms in Precambrian rocks, beginning from the Archean Eon about 3.5 billion years ago and ending in the Cambrian Period about 0.5 billion years ago. The paper analyzes facial peculiarities in the lateral differentiation of microfossils in Proterozoic basins and the main stages of temporal changes in fossil cyanobacterial communities, which are based on the irreversible succession of physicochemical conditions on the Earth and the evolution of eukaryotic microorganisms and their incorporation into prokaryotic ecosystems. To gain insight into Proterozoic fossil record, modern stratified cyanobacterial mats built up from layers of prokaryotes are considered. The analysis of phosphatization, carbonatization, and silification processes in modern algal–bacterial communities suggests that analogous processes took place in Proterozoic microbiotas. A comparison of modern and Precambrian living forms confirms the inference that cyanobacterial communities are very conservative and have changed insignificantly both morphologically and physiologically during the past two billion years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号