首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous study with Methanobacterium thermoautotrophicum evidence was presented that methanogenesis and autotrophic synthesis of activated acetic acid from CO2 are linked processes. In this study one-carbon metabolism was investigated with growing cultures and in vitro.Serine was shown to be converted into glycine and activated formaldehyde, but only traces of label from [14C-3] of serine appeared in biosynthetic one-carbon positions. This seeming discrepancy could be explained if the same activated formaldehyde is an intermediate in biosynthesis and in methanogenesis from CO2. This hypothesis was supported by demonstrating that [14C-3] of serine and [14C] formaldehyde were rapidly converted into methane, but a small portion of the label was also specifically incorporated into the methyl group of acetate. Methane and acetate synthesis in vitro were similarly stimulated by various compounds. These experiments indicate that the methyl of acetate and methane share common one-carbon precursor(s), i.e. methylene tetrahydromethanopterin, which can also be formed enzymatically from C-3 of serine or chemically from formaldehyde.Propyl iodide 20–40 M) and methyl iodide (1–3 M) completely inhibited growth in the dark. This effect was abolished by light. Methane formation was hardly affected. When 14CH3I was applied at an only slightly inhibitory concentration, 14C was incorporated into the methyl of acetate. In vitro, similar effects on [14C] acetate formation from 14CO2 or from [14C-3] of serine were observed, except that methyl iodide did not inhibit, but even stimulated acetate synthesis. These experiments indicate that a corrinoid is involved in acetate synthesis and probably not in methanogenesis from CO2; the metal is light-reversibly alkylated and functions in methyl transfer to the acetate methyl.  相似文献   

2.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   

3.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

4.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

5.
Desulfovibrio vulgaris (Marburg) and Methanobrevibacter arboriphilus (AZ) are anaerobic sewage sludge bacteria which grow on H2 plus sulfate and H2 plus CO2 as sole energy sources, respectively. Their apparent Ks values for H2 were determined and found to be approximately 1 M for the sulfate reducing bacterium and 6 M for the methanogenic bacterium. In mixed cell suspensions of the two bacteria (adjusted to equal V max) the rate of H2 consumption by D. vulgaris was five times that of M. arboriphilus, when the hydrogen supply was rate limiting. The apparent inhibition of methanogenesis was of the same order as expected from the different Ks values for H2. Difference in substrate affinities can thus account for the inhibition of methanogenesis from H2 and CO2 in sulfate rich environments, where the H2 concentration is well below 5 M.  相似文献   

6.
Summary Copper-deficient cells ofPseudomonas stutzeri strain ZoBell synthesize catalytically inactive nitrous oxide (N2O) reductase which is activated by added Cu(II) in the absence of de novo protein synthesis. The apparentK m for the activation process is 0.13 M. Activation is temperature-dependent and is inhibited by Cd(II)(K i 1.27 M) and less strongly by Zn(II), Ni(II), and Co(II). The same metal ions at 20 M have little or no effect on N2O reduction of intact cells. Apo-N2O reductase of transposon Tn5-inducednos mutants with defective Cu-chromophore biosynthesis is not reactivated by Cu(II). N2O reductase of Cu-sufficient and Cu-deficient wild type, and ofnos mutants is localized in the periplasm, the latter providing the likely site of metal incorporation into the apoenzyme.  相似文献   

7.
Two strains of Methanosarcina (M. Barkeri strain MS, isolated from sewage sludge, and strain UBS, isolated from lake sediments) were found to have similar cellular properties and to have DNA base compositions of 44 mol percent guanosine plus cytosine. Strain MS was selected for further studies of its one-carbon metabolism. M. barkeri grew autotrophically via H2 oxidation/CO2 reduction. The optimum temperature for growth and methanogenesis was 37°C. H2 oxidation proceeded via an F420-dependent NADP+-linked hydrogenase. A maximum specific activity of hydrogenase in cell-free extracts, using methyl viologen as electron acceptor, was 6.0 mol min · mg protein at 37°C and the optimum pH (9.0). M. barkeri also fermented methanol andmethylamine as sole energy sources for growth. Cell yields during growth on H2/CO2 and on methanol were 6.4 and 7.2 mg cell dry weight per mmol CH4 formed, respectively. During mixotrophic growth on H2/CO2 plus methanol, most methane was derived from methanol rather than from CO2. Similar activities of hydrogenase were observed in cell-free extracts from H2/CO2-grown and methanol-grown cells. Methanol oxidation apparently proceeded via carrierbound intermediates, as no methylotrophy-type of methanol dehydrogenase activity was observed in cell-free extracts. During growth on methanol/CO2, up to 48% of the cell carbon was derived from methanol indicating that equivalent amounts of cell carbon were derived from CO2 and from an organic intermediate more reduced than CO2. Cell-free extracts lacked activity for key cell carbon synthesis enzymes of the Calvin cycle, serine path, or hexulose path.Abbreviations CAPS cycloaminopropane sulfonic acid - CH3-SCoM methyl coenzyme M - DCPIP 2,6-dichlorophenolindophenol - DEAE diethylaminoethyl - dimethyl POPOP 1,4-bis-2-(4-mothyl-5-phenyloxazolyl)-benzene - DNA deoxyribonucleic acid - dpm dismtegrations per min - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - F420 factor 420 - G+C guanosine plus cytosine - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - PBBW phosphate buffered basal Weimer - PMS phenazine methosulfate - PPO 2,5-diphenyloxazole - rRNA ribosomal ribonucleic acid - RuBP ribulose-1,5-bisphosphate - Tris tris-hydroxymethyl-aminomethane - max maximum specific growth rate  相似文献   

8.
Synaptoneurosomes isolated from cerebral cortices of male Sprague-Dawley rats were used for studying GABAA receptor-regulated chloride influx. The in vitro effects of GABA antagonists, SR 95531 (a pyridazinyl GABA derivative) and bicuculline, on pentobarbital-stimulated, muscimol-stimulated or flunitrazepam-enhanced, muscimol-stimulated chloride uptake were studied. The chloride uptake was determined at 30°C, for 5 sec. Pentobarbital and muscimol produced a maximal stimulation of chloride uptake in cortical synaptoneurosomes at 500 M and 50M, respectively. SR 95531 as well as bicuculline had no effect on the basal uptake of chloride. Whereas, SR 95531 (0.3–30 M) and bicuculline (0.1–100 M), when added 5 min before muscimol (50 M), produced a significant concentration-dependent inhibition of muscimol (50 M)-stimulated chloride uptake (IC50 s of 0.89±0.11 M and 13.45±2.10M, respectively). In studies of the inhibitory effects of SR 95531 and bicuculline on pentobarbital (500 M)-stimulated chloride uptake, the IC50 s were 0.81±0.12 M and 3.86±1.14 M, respectively. SR 95531 exhibited a more potent inhibitory effect than bicuculline on flunitrazepam-enhanced, muscimol-stimulated chloride uptake. The results revealed that SR 95531 has a more potent antagonistic effect than bicuculline on GABAA-regulated chloride flux.  相似文献   

9.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

10.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

11.
Axillary shoot induction and plant regeneration were obtained in Plantago ovata. The optimum medium for inducing axillary shoots was Murashige & Skoog (MS) medium [5] supplemented with 4.6 M kinetin and 0.05 M NAA. Rooting of shoots was best on half-strength MS medium containing 5.0 M IBA and 0.05 M kinetin. The regenerated plants were similar to the control plants in karyotypic and phenotypic details.  相似文献   

12.
The ultrastructural changes produced by iodine-potassium iodide solution on yeast cells of Sporothrix schenckii were investigated by transmission electron microscopy in order to clarify the mechanism of oral potassium iodide therapy for sporotrichosis. Yeast cells were dipped with solutions containing various concentrations of iodine. The rate of germination decreased markedly between the range of iodine concentrations from 0.63 g/ml to 5.0 g/ml. No significant ultrastructural changes were seen at the concentration of the iodine of 1.25 g/ml (80% germination) or less. In the concentration of 2.5 g/ml (50% germination), normal cells and degenerated cells coexisted. When the cells were treated with 5.0 g of iodine per ml (0% germination) or more, their interior structures were completely destroyed. It is assumed that iodine treatment of the organism causes rapid destruction in the whole cell.  相似文献   

13.
Single leaf photosynthetic characteristics of Alnus glutinosa, A. incana, A. rubra, Elaeagnus angustifolia, and E. umbellata seedlings conditioned to ambient sunlight in a glasshouse were assessed. Light saturation occurred between 930 and 1400 mol m-2s-1 PAR for all species. Maximum rates of net photosynthesis (Pn) measured at 25°C ranged from 12.8 to 17.3 mol CO2m-2s-1 and rates of dark respiration ranged from 0.74 to 0.95 mol CO2m-2s-1. These values of leaf photosynthetic variables are typical of early to midsuccessional species. The rate of Pn measured at optimal temperature (20°C) and 530mol m-2s-1 PAR was significantly (p<0.01) correlated with leaf nitrogen concentration (r=0.69) and negatively correlated with the mean area of a leaf (r=–0.64). We suggest that the high leaf nitrogen concentration and rate of Pn observed for Elaeagnus umbellata and to a lesser degree for E. angustifolia are genetic adaptations related to their crown architecture.Abbreviations Pn net photosynthesis  相似文献   

14.
The concentration of the C2–C5 carboxylic acids in the water column and sediment of shallow, eutrophic, drainage channels (Lewes Brooks, UK) were measured by gas chromatography. The concentrations of these acids were negatively correlated with dissolved oxygen. The highest concentrations of acetate (up to 200 M), propanoate (up to 38 M) and butanoate (up to 1.2 M) were measured during the summer in the water above the sediment, which became hypoxic during this period. Both acetate and propanoate concentrations declined at night. High concentrations of the acids were also recorded in reedbeds, which were also hypoxic. Only acetate was detected in the sediment pore water (up to 168 M). Its concentration declined during the autumn and winter and with increasing depth within the sediment.Author for Correspondence  相似文献   

15.
Ethanol significantly enhances cell death of differentiated rat cerebellar granule neurons on culture in a serum-free medium containing a depolarizing concentration of KCl (25 mM), 5 M MK-801 (an NMDA receptor antagonist), and 20–200 mM ethanol for 1–4 days. Cell death augmented by ethanol was concentration- and time-dependent with neurons displaying hallmark apoptotic morphology and DNA fragmentation that correlated with the activation of cytosolic caspase-3. Inclusion of 5 M MK-801 or 100 M glycine in culture media did not alter rates of cell death indicating ethanol toxicity is mediated via an NMDA receptor-independent pathway. Preincubation with 50 M gangliosides GM1, GD1a, GD1b or GT1b for 2 h, or preincubation with 10 M LIGA20 (a semisynthetic GM1 with N-dichloroacetylsphingosine) for 10 min, attenuated caspase-3 activity and ethanol-induced cell death. Data show native gangliosides and a synthetic derivative are potently neuroprotective in this model of ethanol toxicity, and potentially serve as useful probes to further unravel the mechanisms relevant to neuronal apoptosis.  相似文献   

16.
Lateral buds may be preferred to shoot tips for in vitro propagation of papaya because of its unbranched nature. Proliferating shoot cultures from lateral buds appeared extremely compact with shortened internodes and leaf lamina of the cytokinin level (BAP 2 M) reported for multiple shoot production from shoot tips. ZEA (4 M) and 2iP (8 M) although reduced the proliferation rate, resulted in better growth of the shoot from lateral bud. Rooting was observed with IBA 20 M but plantlets so produced remained stunted.  相似文献   

17.
An efficient and reliable micropropagation system for Persian clover (Trifolium resupinatum L.) was developed using different explants and media. Node, hypocotyl and cotyledonary node explants were cultured on Murashige and Skoog (MS) medium supplemented with combinations of either 6-benzyladenine (BA) and indole-3-butyric acid (IBA) or BA, Kinetin (KIN) and IBA. Direct multiple shoots developed within 6weeks in all explants in most media tested. The best shoot multiplication capacity was obtained from cotyledonary node explants on MS medium containing 7.1M BA and 1M IBA or 14.1M BA and 1M IBA. Elongated shoots were rooted on either MS medium alone or combination with different concentrations of indole-3-butyric acid (IBA), indole-3-acetic acid (IAA) and -naphthaleneacetic acid (NAA). High rooting was achieved in half strength MS medium containing 8M IBA.  相似文献   

18.
Embryogenic culture was induced from the immature embryos of Quercus serrata using Marashige and Skoog's medium (MS) containing 0.1 M each of 2,4-d and BAP, and subcultured for seven months before isolation of protoplasts by using 1% Cellulase RS in 0.6 M mannitol solution. Efficient colony formation was obtained when protoplasts were cultured in a liquid MS medium containing 0.6 M mannitol, 3% sucrose and combination of 0.1 M or 1 M each of 2,4-d and BAP. Excluding ammonium nitrate from the MS medium resulted in the decrease of the percentage of colony formation. From colonies, both agar culture and liquid culture were sustained in the MS media without mannitol containing no plant growth regulator, or containing 0.1 M of BAP in combination with 0.1 M or 1 M of 2,4-d.Abbreviations BAP 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - MS medium after Murashige & Skoog (1962).  相似文献   

19.
In vitro micropropagation of Arctostaphylos uva-ursi was performed to increase the number of ground cover species able to serve as substitute for members of the Rosaceae susceptible to fire blight. Explants (node segments) excised from plants growing in the greenhouse were established in vitro on a medium containing 10 M -naphthaleneacetic acid (NAA) and activated charcoal (2 g I-1). Using in vitro grown shoots, two propagation procedures were used:- Culture of nodal fragments with 50 M NAA resulted in the growth of 6 to 7 nodes every 4 weeks, yielding 1 700 almost rootable shoots after 4 subcultures;- Development of axillary shoots obtained with media containing 25 M benzyladenine (BA) and 20 M indoleacetic acid (IAA) yielded almost 500 rootable shoots after 4 subcultures. The rate of propagation decreased after the 3rd subculture.Percentage of in vitro rooted shoots reached 98% with diluted micronutrients and 10 M NAA but 31% of the plants died during acclimatization.Abbreviations BA benzyladenine - BM basal medium - HID high intensity discharge - IAA indoleacetic acid - IBA indolebutyric acid - NAA -naphthaleneacetic acid - PAR photosynthetic active radiation - 2iP 2-isopentenyladenine  相似文献   

20.
Konjak (Amorphophallus konjac K. Koch) was grown under normal (350 bar) or enriched (700 bar) CO2 partial pressure in glasshouses kept at 33/26 °C. Doubling the CO2 partial pressure resulted in twice the yield of corm because the net CO2 assimilation rate doubled and, due to the simple source-sink relationship, the increased production was partitioned to the corm. The response to CO2 of assimilation by konjak is discussed in relation to its original habitat in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号