首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The labelling of the phosphoinositides and phosphatidic acid in washed rabbit platelets incubated with [32P]phosphate or [3H]glycerol was studied in the presence of isotope and after unincorporated isotope had been removed. With both isotopes the increase in the specific radioactivity of phosphatidylinositol 4,5-bisphosphate (PIP2) lagged behind that of phosphatidylinositol 4-phosphate (PIP) but the specific radioactivity remained higher after unincorporated isotope had been removed. This result was consistent with the presence of a second pool of PIP2, which interconverted slowly with the pool of PIP2 which was in direct equilibrium with PIP, proposed to explain the increase in specific radioactivity of PIP2 which accompanies the decrease in amount of PIP2 at 10 s in ADP-stimulated platelets. In platelets labelled with [3H]glycerol, the specific radioactivity of PIP2 became higher than that of PIP and the specific radioactivity of PIP became higher than that of phosphatidylinositol (PI). These results were interpreted to indicate that there were two pools of PIP; of these the pool with the higher specific radioactivity was the precursor of PIP2. Similarly, two pools of PI were proposed. The presence of pools of the phosphoinositides with different specific radioactivities necessitates the measurement of chemical amount of these compounds when studying the effect of stimulation of the platelets, since changes in labelling may not accurately reflect changes in the amount of the phosphoinositides.  相似文献   

2.
Dictyostelium cells transformed with multiple copies of a mutant Dictyostelium ras gene (ras-Thr12 that gave a Gly to Thr substitution at position 12 of the ras protein, showed 2 to 3 times greater incorporation of 32P into PtdInsP and PtdInsP2 (without changing the specific radioactivity) compared to the untransformed strain or a strain transformed with multiple copies of the normal ras-Gly12 gene. The ratio of labelled PtdInsP2/PtdInsP, however, was not affected by the ras-Thr12 gene. Stimulation with the chemoattractant, cyclic AMP, caused a rapid but transient decrease in the levels of labelled PtdInsP and PtdInsP2 in the normal and ras-Gly12-transformed strains but ras-Thr12-transformed strains failed to respond. In untransformed cells a small, very rapid rise in the level of labelled PtdInsP and PtdInsP2 was seen immediately after stimulation of the cells with cyclic AMP (before the transient decrease) and this rise was greatly accentuated in cells transformed with multiple copies of the normal ras-Gly12 gene. Agents that induce prolonged activation of phosphoinositidase C such as AlF4- or GTPYS gave a lowered steady-state level of incorporation of 32P into PtdInsP and PtdInsP2 in all strains. The results indicate that the enzyme in the inositol phosphate pathway that is affected by the ras gene is not phosphoinositidase C, but is an enzyme before PtdInsP kinase, possibly PtdIns kinase.  相似文献   

3.
A number of recent studies have highlighted the presence of a nuclear pool of inositol lipids [1] [2] that is regulated during progression through the cell cycle [1] [3], differentiation [1] [2] and after DNA damage [2], suggesting that a number of different regulatory pathways impinge upon this pool of lipids. It has been suggested that the downstream consequence of the activation of one of these nuclear phosphoinositide (PI) regulatory pathways is the generation of nuclear diacylglycerol (DAG) [1] [3] [4], which is important in the activation of nuclear protein kinase C (PKC) [5] [6] [7]. Activation of PKC in turn appears to regulate the progression of cells through G1 and into S phase [4] and through G2 to mitosis [3] [8] [9] [10] [11]. Although the evidence is enticing, there is as yet no direct demonstration that nuclear PIs can be hydrolysed to generate nuclear DAG. Previous data in murine erythroleukemia (MEL) cells have suggested that nuclear phosphoinositidase Cbeta1 (PIC-beta1) activity is important in the generation of nuclear DAG. Here, we demonstrate that the molecular species of nuclear DAG bears little resemblance to the PI pool and is unlikely to be generated directly by hydrolysis of these inositol lipids. Further, we show that there are in fact two distinct subnuclear pools of DAG; one that is highly disaturated and mono-unsaturated (representing more than 90% of the total nuclear DAG) and one that is highly polyunsaturated and is likely to be derived from the hydrolysis of PI. Analysis of these pools, either after differentiation or during cell-cycle progression, suggests that the pools are independently regulated, possibly by the regulation of two different nuclear phospholipase Cs (PLCs).  相似文献   

4.
Functional heterogeneity of polyphosphoinositides in human erythrocytes.   总被引:1,自引:0,他引:1  
After labelling of erythrocytes with [32P]P1 for 23 h, the specific radioactivities of the phosphomonoester groups of PtdIns4P and of PtdIns(4,5)P2 approached equilibrium values which were close to that of the gamma-phosphate of ATP (78-85%), showing that almost all of these phosphate groups were metabolically active. Phosphoinositidase C (PIC) activation, using Ca2+ and the ionophore A23187, of 32P-prelabelled erythrocytes was used to investigate a possible functional heterogeneity of the phosphoinositides. Hydrolysis of PtdIns(4,5)P2, measured from its radioactivity, decreased as function of the time of prelabelling up to a constant value equal to that measured from its content. In contrast, hydrolysis of PtdIns4P, determined both from radioactivity and from content, was always the same. These data suggest that newly labelled molecules of PtdIns(4,5)P2, initially accessible to PIC, then moved towards a PIC-resistant pool. This was further confirmed by measuring the fraction of labelled PtdIns(4,5)P2 molecules accessible to PIC after a prelabelling period of 5 min and different times of reincubation. Hydrolysis by PIC was also measured in erythrocytes in which the phosphoinositide content had been modified by activation (Mg2+-enriched cells) or inhibition (ATP-depleted cells) of the phosphoinositide kinases. The sizes of the PIC-resistant pools of polyphosphoinositides were not affected by these treatments, indicating that the kinases (and the phosphatases) act on the PIC-sensitive pools. This was also shown by the decrease in the production of Ins(1,4,5)P3 upon PIC activation in ATP-depleted erythrocytes. A model is presented in which the PIC-sensitive pools of polyphosphoinositides are those which are accessible to the kinases and the phosphatases and are rapidly turned over.  相似文献   

5.
1. A Hepes-based medium has been devised which allows rapid Pi exchange across the plasma membrane of the human erythrocyte. This allows the metabolically labile phosphate pools of human erythrocytes to come to equilibrium with [32P]Pi in the medium after only 5 h in vitro. 2. After 5-7 h incubation with [32P]Pi in this medium, only three phospholipids, phosphatidic acid (PtdOH), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) are radioactively labelled. The concentrations of PtdIns4P and PtdIns4,5P2 remain constant throughout the incubation, so this labelling process is a reflection of the steady-state turnover of their monoester phosphate groups. 3. During such incubations, the specific radioactivities of the monoesterified phosphates of PtdIns4, PtdIns4,5P2 and PtdOH come to a steady value after 5 h that is only 25-30% of the specific radioactivity of the gamma-phosphate of ATP at that time. We suggest that this is a consequence of metabolic heterogeneity. This heterogeneity is not a result of the heterogeneous age distribution of the erythrocytes in human blood. Thus it appears that there is metabolic compartmentation of these lipids within cells, such that within a time-scale of a few hours only 25-30% of these three lipids are actively metabolized. 4. The phosphoinositidase C of intact human erythrocytes, when activated by Ca2+-ionophore treatment, only hydrolyses 50% of the total PtdIns4,5P2 and 50% of 32P-labelled PtdIns4,5P2 present in the cells: this enzyme does not discriminate between the metabolically active and inactive compartments of lipids in the erythrocyte membrane. Hence at least four metabolic pools of PtdIns4P and PtdIns4,5P2 are distinguishable in the human erythrocyte plasma membrane. 5. The mechanisms by which multiple non-mixing metabolic pools of PtdOH, PtdIns4P and PtdIns4,5P2 are sustained over many hours in the plasma membranes of intact erythrocytes are unknown, although some possible explanations are considered.  相似文献   

6.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

7.
Abstract: Chlorpromazine, a cationic amphiphilic drug known to affect phospholipid metabolism, greatly increases the generation of inositol phosphates in C6 glioma cells. When a pulse-chase protocol with myo-[2-3H]inositol as the radioactive precursor was used, the peak increase in radioactivity of inositol phosphates was observed at 20 min. The drug decreased inositol tetrakisphosphate labeling as a percentage of inositol trisphosphate in a dose-dependent manner. It also increased the labeling of the inositol-containing phospholipids, the precursors of the inositol phosphates. The increase in radioactivity of both phospholipids and inositol phosphates was dose-dependent, but appeared also to be a function of the time of exposure of the cultures to the drug, suggesting that the concentration of chlorpromazine in the cell, and not that in the medium, is the critical factor. The optimum concentration for maximum phospholipid labeling was lower than that eliciting maximum generation of inositol phosphates. The data suggest that the mechanism probably does not involve cell-surface receptors, but rather may consist of a direct effect of chlorpromazine on phosphoinositidase C and possibly other enzymatic reactions concerned with the metabolism of inositol phosphates.  相似文献   

8.
We have compared the effects of pretreatment of Swiss 3T3 cell with pertussis toxin on the stimulation of DNA synthesis and phosphoinositide hydrolysis in response to a wide variety of mitogens. The toxin substantially inhibited the stimulation of DNA synthesis in response to a phorbol ester or various peptide and polypeptide growth factors irrespective of their ability to activate phosphoinositidase C. Production of inositol phosphates in response to platelet-derived growth factor, fibroblast growth factor and prostaglandin F2 alpha were unaffected by the toxin while bombesin- and vasopressin-stimulated formation of inositol phosphates were inhibited by only 27 and 23% respectively. These results argue against a major role for a pertussis toxin-sensitive G protein in coupling any of these mitogen receptors to activation of a phosphoinositidase C. Furthermore, the results suggest that the widespread inhibitory effects of pertussis toxin on mitogen-stimulated DNA synthesis may be unrelated to the toxin's limited actions on phosphoinositide hydrolysis.  相似文献   

9.
The metabolic pool of adenine nucleotides in platelets can be labeled by incubating platelets for 1 h in vitro with [14C]adenosine or [32P]orthophosphate. When these platelets are treated with thrombin, the adenine nucleotides released are not labeled. Because of this, Holmsen's suggestion of a metabolically inert pool of granule nucleotides has been generally accepted. We have found that upon incubation of labeled rabbit platelets for longer times (up to 6 h) in vitro, or upon reinjection and reharvesting at times up to 66 h, the releasable pool of adenine nucleotides becomes labeled. Because the rates of 32p and 14C incorporation into this releasable pool are similar, it seems likely that these labels enter the granules as ATP. Equilibrium between the metabolic and granule pools is complete by 18 h. When rabbit platelets are labeled in vivo by intravenous injection of [32P]orthophosphate, peak labeling occurs between 60 and 70 h; this corresponds to their maturation time. The platelets probably incorporate 32P during their production in the megakaryocytes. The specific radioactivity of the adenine nucleotides in the releasable (granule) pool of these platelets is the same as the specific radioactivity in the nonreleasable (metabolic) pool. Since inorganic phosphate in platelets (and undoubtedly in the megakaryocytes) exchanges with inorganic phosphate in plasma, and since the radioactivity of the latter decreases rapidly, the adenine nucleotides in the two pools must exchange to maintain the same specific radioactivity. Transfer of adenine nucleotides into storage granules may represent a general phenomenon because it has been observed in the chromaffin cells of the adrenal medulla also.  相似文献   

10.
The two fundamental parameters of corticotropin (ACTH) secretion are the number of secreting corticotropes and the amount of ACTH secreted by each cell. We have measured these parameters in rat corticotropes in response to increasing concentrations of corticotropin-releasing factor (CRF) or arginine vasopressin (AVP). Increasing concentrations of AVP stimulated more corticotropes to secrete, while the amount of ACTH each cell secreted remained relatively fixed (nongraded secretory response). Conversely, increasing concentrations of CRF stimulated more ACTH secretion per cell (graded secretory response), while the number of secretory cells remained relatively constant. When viewed from the perspective of a single corticotrope, it was clear that CRF and AVP induced completely distinct specific responses. We have previously shown, and provide further evidence here, that secretory responses to CRF or AVP occur in the same cell. It is therefore apparent that a single corticotrope is able to generate either a graded, or a nongraded secretory response. We have also considered the potential intracellular changes that must direct graded or nongraded secretion. It is generally accepted that CRF stimulates activation of adenylate cyclase, whereas AVP activates phosphoinositidase in pituitary corticotropes. Our findings, and others surveyed here, suggest that the activation of adenylate cyclase results in graded secretion, while the activation of phosphoinositidase induces the nongraded secretion. Graded or nongraded secretion may therefore be linked to specific second messengers. It is hypothesized that the inositol 1,4,5-trisphosphate-mediated release of an intracellular Ca2+ store constitutes a mechanism whereby phosphoinositidase-coupled hormones set in motion the nongraded secretory response. These findings suggest novel functions for individual second messengers.  相似文献   

11.
Plasma metabolism of apolipoprotein A-IV in humans   总被引:5,自引:0,他引:5  
As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day. The results are consistent with the conclusions that: apoA-IV is present in human plasma in three distinct metabolic pools; apoA-IV associated with the triglyceride-rich lipoproteins is a precursor to the apoA-IV HDL and LFF pools; apoA-IV in LFF is not a free protein and its turnover rate is faster than that of apoA-IV in HDL; since no transfer of apoA-IV from the HDL or the LFF occurs, these pools may represent a terminal pathway for the catabolism of apoA-IV; and the catabolism of apoA-IV in HDL is dissociated from that of apoA-I although both apoproteins may reside on the same lipoprotein particles.  相似文献   

12.
Phosphoinositidase C activity was revealed in nuclei isolated from PC12 rat pheochromocytoma cells incubated with tritiated phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphoinositide breakdown was found to be optimal at neutral pH and Ca++ concentrations ranging from endogenous levels to millimolar values. To characterize the enzymes involved, three monoclonal antibodies directed against the beta, gamma and delta phosphoinositidase C isoforms were employed. A combination of Western blot immunochemical analysis on cytoplasmic and nuclear fractions and of in situ immunocytochemistry on intact cells and isolated nuclei indicated that phosphoinositidase C gamma, though predominantly cytoplasmic, was present in both cell compartments. On the contrary, phosphoinositidase C beta was exclusively localized in the nucleus, whereas phosphoinositidase C delta was restricted to the cytoplasm. These data suggest that inositol lipid breakdown is controlled by different phosphoinositidase C isozymes in the various cell compartments, and support the notion that a separate phosphoinositide signalling system is located in the nucleus.  相似文献   

13.
Abstract The effect of interleukin-1 (IL-1) and bacterial endotoxin (lipopolysaccharide, LPS) on the activation of phosphoinositidase C (PIC) and on prostaglandin E2 release was studied in monocytes (Mø). Both IL-1α and IL-1β increased the release of PGE2 in a concentration-dependent manner, with EC50s of 0.48 nM and 0.12 nM, respectively. Intact Mø were prelabelled with [3H]inositol and the formation of inositol phosphates (IPs) was estimated by ion exchange chromatography. PIC activity was estimated directly by measuring the conversion of [3H]phosphatidylinositol-4,5,-bisphosphate to aqueous soluble radioactivity by Mø homogenates. IL-1α (5.8 nM) increased the accumulation of IPs within 1–4 minutes and increases in IP3 and IP4 occured before the increase in IP1+2 whereas LPS only increased the IPs level after at least 30 min. IL-1α increased PIC activity in Mø homogenates within 15 min with an EC50 of 0.58 nM and IL-1β (0.1 nM) also increased activity. Neither IL-1α nor IL-1β affected the PIC activity of membrane or cytosolic fractions. LPS decreased activity in all fractions. These data indicate that IL-1, but not LPS, can directly lead to an increased activity of PIC which may be involved in eicosanoid formation in Mø.  相似文献   

14.
The effects of lithium (Li+) on the adenylyl cyclase and inositol phospholipid receptor signalling pathways were compared directly in noradrenergic and carbachol stimulated rat brain cortical tissue slices. Li+ was a comparatively weak inhibitor of noradrenaline-stimulated cyclic AMP accumulation with an IC50 of approx. 20 mM. By contrast, half-maximal effects of Li+ on inositol monophosphate (InsP) accumulation in [3H]inositol labelled tissue slices occurred at about 1 mM. A similar IC50 for Li+ of about 1 mM was also obtained for noradrenaline-stimulated accumulation of CMP-phosphatidate (CMPPA), a sensitive indicator of intracellular inositol depletion, in tissue slices that had been prelabelled with [3H]cytidine. The effect of myo-inositol (inositol) depletion on the prolonged activity of phosphoinositidase C (PIC) was examined in carbachol-stimulated cortical slices using a novel mass assay for InsP. Exposure to a maximal dose of carbachol for 30 min in the presence of 5 mM Li+ caused a 10-fold increase in the level of radioactivity associated with the InsP fraction, but only a 2-fold increase in InsP mass. During prolonged incubations in the presence of both carbachol and Li+ the accumulation of InsP mass was enhanced if 30 mM inositol was included in the medium. The results are compatible with the inositol depletion hypothesis of Li+ action but do not support the concept that adenylyl cyclase or guanine nucleotide dependent proteins represent therapeutically relevant targets of this drug.  相似文献   

15.
Agents that increase the intracellular Ca2+ concentration have been examined for their ability to stimulate 3H-inositol polyphosphate accumulation in rat cerebral cortex slices. Elevated extracellular K+ levels, the alkaloid sodium channel activator veratrine, the calcium ionophore ionomycin, and the marine toxin maitotoxin were all able to stimulate phosphoinositide metabolism. Certain features appear common to the agents studied. Thus, although [3H]inositol monophosphate, [3H]inositol bisphosphate ([3H]InsP2), and [3H]inositol trisphosphate were all stimulated, a proportionally greater effect was observed on [3H]InsP2 in comparison to stimulation by the muscarinic receptor agonist carbachol. However, only an elevated K+ level stimulated [3H]inositol tetrakisphosphate ([3H]InsP4) accumulation alone or produced marked synergy with carbachol on the formation of this polyphosphate. The results suggest that agents that elevate the cytoplasmic Ca2+ concentration in cerebral cells can increase the hydrolysis of membrane polyphosphoinositides. The pattern of the response differs from that produced by muscarinic receptor agonists and indicate that Ca2(+)-dependent hydrolysis may involve different pools of lipids, phosphoinositidase C enzymes, or both. However, clear differences in the ability of these agents to stimulate InsP4, alone or in the presence of muscarinic agonist, suggest that factors other than a simple elevated intracellular Ca2+ concentration are implicated.  相似文献   

16.
The specific radioactivity of [3H]Leu in the extracellular, intracellular, and Leu-tRNA pools of normal (white leghorn) and dystrophic (line 307) embryonic chick breast muscle cultures was analyzed as a function of equilibration time and extracellular Leu concentration (0.05-5 mM). The primary results were the following 1) [3H]Leu equilibrated to a constant specific radioactivity in the intracellular and Leu-tRNA pools within 2 min after addition to both normal and dystrophic cultures. 2) After equilibration, the extracellular [3H] Leu specific radioactivity in dystrophic cell culture medium was lower than that of medium exposed to normal cells (especially at low Leu concentrations), probably because of increased release of unlabeled Leu from the dystrophic cells as a result of faster protein breakdown. Accordingly, the specific radioactivities in the intracellular and the Leu-tRNA pools were also lower in dystrophic cells. 3) At 5 mM extracellular Leu, the specific radioactivity in the Leu-tRNA pool was approximately 40% lower than the specific radioactivity in the intracellular pool in both normal and dystrophic cells. Thus, high concentrations of extracellular Leu cannot be used to "flood out" reutilization of unlabeled Leu (released by protein degradation) during protein synthesis. 4) At 5.0 mM extracellular Leu, the specific radioactivity of [3H]Leu in the intracellular pool was comparable to that in the extracellular pool in normal and dystrophic cells; however, the specific radioactivity of Leu-tRNA (i.e. the immediate precursor to protein synthesis) was only 55-65% of the extracellular specific radioactivity in normal and dystrophic cells. In conclusion, reutilization of Leu from protein degradation is higher in dystrophic muscle cell cultures than in normal muscle cell cultures, and accurate rates of protein synthesis in cell cultures can only be obtained if specific radioactivity of amino acid in tRNA is measured.  相似文献   

17.
Localization of myoplasmic free calcium was measured in fura2-loaded single rat myocardial cells to determine whether the mechanism of norepinephrine desensitization includes redistribution of calcium. Fluorescence intensities at each pixel were quantitated by use of a photon-counting, microchannel plate camera. From these images, values of calcium-dependent fluorescence intensity averages in whole cells, areas of calcium release (as zones of high intracellular calcium concentrations), and ratios of fluorescence intensity in central vs. peripheral sites were determined. Stimulation by 1 nM norepinephrine caused an increase in total free intracellular calcium and an activation of intracellular calcium release sites from subsarcolemmal pools initially and later from centrally located calcium pools. Subsequent addition of 100 nM norepinephrine failed to cause significant intracellular calcium release from centrally located pools. In contrast, forskolin exposure still released high concentrations of calcium from these central pools. These results indicate that pretreatment with even a relatively small concentration of norepinephrine causes markedly decreased subsequent intracellular calcium release from centrally located sarcoplasmic reticulum because of a refractoriness of the link between receptor activation and calcium release.  相似文献   

18.
Receptor-phosphoinositidase C coupling. Multiple G-proteins?   总被引:1,自引:0,他引:1  
W W Lo  J Hughes 《FEBS letters》1987,224(1):1-3
Recent evidence has suggested that receptor-mediated phosphoinositide turnover, like that of the adenylate cyclase cAMP pathway, is regulated by guanine nucleotides. It is likely that one or more guanine nucleotide-binding proteins (G-proteins) couple calcium-mobilizing receptors to the activation of phosphoinositidase C. Recent studies utilizing various bacterial toxins have strongly suggested the presence of multiple G-proteins in the regulation of receptor-phosphoinositidase C coupling in a variety of cell types.  相似文献   

19.
E Peles  R B Levy  E Or  A Ullrich    Y Yarden 《The EMBO journal》1991,10(8):2077-2086
The neu/HER2 proto-oncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential for the presumed receptor is released through multiple genetic mechanisms including a specific point mutation, truncation at the extracellular domain and overexpression of the protooncogene. Here we show that all these modes of oncogenic activation result in a constitutively phosphorylated neu protein and an increase in tyrosine phosphorylation of a phosphatidylinositol-specific phospholipase (PLC gamma). The examined transforming neu/HER2 proteins, unlike the normal gene product, also co-immunoprecipitated with PLC gamma molecules. A kinase-defective mutant of a transforming neu failed to mediate both tyrosine phosphorylation and association with PLC gamma, suggesting direct interaction of the neu kinase with PLC gamma. This possibility was examined by employing a chimeric protein composed of the extracellular ligand-binding domain of the epidermal growth factor receptor and the neu cytoplasmic portion. The chimeric receptor mediated rapid ligand-dependent modification of PLC gamma on tyrosine residues. It also physically associated, in a ligand-dependent manner, with the phosphoinositidase. Based on the presented results we suggest that the mechanism of cellular transformation by the neu/HER2 receptor involves tyrosine phosphorylation and activation of PLC gamma.  相似文献   

20.
The extracellular environment is a major factor in determining the responsiveness of a cell to particular stimuli. For example, E series prostaglandins suppress B cell responses to T-independent antigens, mitogen stimulation of DNA synthesis and proliferation, and the primary immune response. We investigated the effects of prostaglandins on the intracellular signals generated by receptor-coupled effector systems in B lymphocytes. Pretreating splenocytes from athymic nude mice with forskolin, PGE1, or PGE2 decreased the magnitude of anti-IgM-induced changes in cytosolic free [Ca2+]. Addition of 8-Br-cAMP, forskolin, PGE1, or PGE2 following stimulation with anti-IgM resulted in a decrease in the intracellular calcium signal measured by fluorescence-activated cell sorting using Indo-1 as a Ca2+ indicator. This decrease was not a result of an inhibition of influx across the plasma membrane. Thus activation of adenylate cyclase by prostaglandins modifies the generation of signals by phosphoinositidase C. This effector system cross-talk between adenylate cyclase and phosphoinositidase C is consistent with and may account for the inhibitory effects of prostaglandins in B cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号