首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The importance of the cytoskeleton in protein synthesis was studied in differentiating L6 rat myoblasts. Soluble and cytoskeletal fractions obtained after gentle, non-ionic detergent lysis of myoblasts and myotubes were analysed for the presence of ribosomes and mRNPs. Polysomal mRNPs were predominantly associated with the cytoskeletal framework and free mRNPs were present in both soluble and cytoskeletal fractions. An examination of the distribution of specific mRNAs in the polysomal and free mRNP populations of both cytoplasmic fractions revealed differences in the pattern of their distribution. It is further demonstrated that in the L6 rat myoblast system, ribosomes and mRNA (or mRNP) are not associated with the microfilaments, unlike in other systems studied.  相似文献   

2.
3.
4.
5.
Messenger RNA coding for a polypeptide of 40 kilodaltons (P40) was translated in proliferating rat L6 myoblasts but not in the terminally differentiated myotubes. The relationship between DNA synthesis, differentiation, and P40 mRNA translation was studied. Aphidicolin, a reversible inhibitor of DNA synthesis, was shown to block DNA synthesis in proliferating myoblasts without allowing these cells to differentiate. A second inhibitor, cytosine arabinoside, when added to dividing myoblasts also prevented differentiation. In the absence of biochemical differentiation P40 mRNA remained in the translated state. Translational repression of this mRNA was, therefore, linked to the biochemical differentiation of rat L6 myoblasts.  相似文献   

6.
Single-stranded DNA (ssDNA), equivalent to about 2% of the total nuclear DNA, was isolated by an improved method of hydroxyapatite chromatography from native nuclear DNA of rat myoblast cells and myotubes of the L6 line. Small quantities of 125I-labelled ssDNA were annealed with a large excess of unlabelled DNA, cytoplasmic RNA and mRNA from myoblasts or myotubes. The results indicated that ssDNA belongs to the non-repetitious portion of the cell genome and is formed of two distinct molecular fractions. The major ssDNA fractions (75%) consist of non-self-reassociating DNA sequences and the minor fraction (25%) consists of self-reassociating DNA sequences. About 30--32% and 25--26% of ssDNA from myoblast represent DNA sequences complementary to total cytplasmic RNAs and polyadenylated RNAs respectively. Hybridizations of ssDNA with an excess of RNA from myoblasts and/or myotubes show differences in the abundance and the diversity of mRNA during mascular differentiation. These differences were confirmed by DNA-driven reactions between 125I-labelled polyadenylated RNA and ssDNA in great excess.  相似文献   

7.
8.
9.
 Myoblast cultures were established from muscle biopsies of two patients harboring heteroplasmic mitochondrial (mt) DNA deletions. The accumulation kinetics of the deleted mtDNA was followed during myoblast to myotube differentiation. The percent- age of deleted mtDNA was determined by quantitative PCR in myoblasts, myotubes, and muscle biopsies. The deleted form accounted for 65% of the mtDNA present in a muscle biopsy from a patient harboring a 5.6-kb deletion. The percentage of deleted mtDNA was 1.2% in myoblasts and increased progressively after differentiation, up to 12% at 21 days after the commitment time. In a second patient harboring a 2.8-kb deletion, the percentage of deleted mtDNA increased much more slowly: from 0.07% in myoblasts to 0.21% after 22 days of differentiation, as compared with 45% in the muscle biopsy. Thus, a three- and ten-fold increase, respectively, in the fraction of deleted mtDNA occurred during the differentiation of myoblasts to myotubes from the two patients. The faster accumulation of deleted mtDNA in the first patient’s cells was linked to an earlier myoblast to myotube differentiation, suggesting that the level of deleted mtDNA is inversely related to the rate of cell proliferation. Received: 16 April 1996/Accepted: 29 July 1996  相似文献   

10.
11.
Irradiation of chicken muscle cells with ultraviolet light (254 nm) to cross-link RNA and protein moieties was used to examine the polypeptide complements of cytoplasmic mRNA-protein complexes (mRNP). The polypeptides of translationally active mRNP complexes released from polysomes were compared to the repressed nonpolysomal cytoplasmic (free) mRNP complexes. In general, all of the polypeptides present in free mRNPs were also found in the polysomal mRNPs. In contrast to polysomal mRNPS, polypeptides of Mr 28 000, 32 000, 46 000, 65 000 and 150 000 were either absent or present in relatively smaller quantities in free mRNP complexes. On the other hand, the relative proportion of polypeptides of Mr 130 000 and 43 000 was higher in free mRNPs than in polysomal mRNP complexes. To examine the role of cytoplasmic mRNP complexes in protein synthesis or mRNA metabolism, the changes in these complexes were studied following (a) inhibition of mRNA synthesis and (b) heat-shock treatment to alter the pattern of protein synthesis. Actinomycin D was used to inhibit mRNA synthesis in chick myotubes. The possibility of newly synthesized polypeptides of cytoplasmic mRNP complexes being assembled into these complexes in the absence of mRNA synthesis was examined. These studies showed that the polypeptides of both free and polysomal mRNP complexes can bind to pre-existing mRNAs, therefore suggesting that polypeptides of mRNP complexes can be exchanged with a pool of RNA-binding proteins. In free mRNP complexes, this exchange of polypeptides is significantly slower than in the polysomal mRNP complexes. Heat-shock treatment of chicken myotubes induces the synthesis of three polypeptides of Mr = 81 000, 65 000 and 25 000 (heat-shock polypeptides). Whether this altered pattern of protein synthesis following heat-shock treatment could affect the polypeptide composition of translationally active polysomal mRNPs was examined. The results of these studies show that, compared to normal cells, more newly synthesized polypeptides were assembled into polysomal mRNPs following heat-shock treatment. A [35S]methionine-labeled polypeptide of Mr = 80 000 was detected in mRNPs of heat-shocked cells, but not of normal cells. This polypeptide was, however, detected by AgNO3 staining of the unlabeled polypeptide of mRNP complexes of normal cells. These results, therefore, suggest that the assembly of newly synthesized 80 000-Mr polypeptide to polysomal mRNPs was enhanced following induction of new heat-shock mRNAs. The results of these studies reported here have been discussed in relation to the concept that free mRNP complexes are inefficiently translated in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.  相似文献   

13.
The relationship between attachment of mRNA to the cytoskeletal framework and its translation was examined using the mRNA for a polypeptide of 40 kDa (P-40) which is translated in rat L6 myoblasts but not in the myotubes. In both myoblasts and myotubes this mRNA was found to be associated with the cytoskeletal framework. Furthermore, the stability of the association between P-40 mRNA and the cytoskeletal framework in absence of RNA and protein synthesis was examined by using actinomycin D and NaF to block RNA and protein synthesis, respectively. In absence of RNA synthesis portions of both nontranslated P-40 mRNA and translated actin mRNA of myotubes were released into the soluble fraction. In myoblasts, however, both mRNAs remained associated with the cytoskeletal framework following inhibition of RNA synthesis. Inhibition of protein synthesis, on the other hand, had a more dramatic effect on the association between the cytoskeletal framework and P-40 mRNA in myoblasts but not in myotubes. In contrast, the association between actin mRNA and cytoskeletal framework was unaffected by inhibition of protein synthesis in both myoblasts and myotubes. The results of these studies show that the molecular nature of association between cytoskeletal framework and mRNA may differ among mRNAs and may also depend on whether the cells are dividing or are terminally differentiated. Furthermore, no direct relationship between the translation of mRNA and its attachment to the cytoskeletal framework was observed.  相似文献   

14.
15.
Uptake and utilization of mRNA by myogenic cells in culture   总被引:2,自引:0,他引:2       下载免费PDF全文
Primary chick myoblast cultures demonstrate the ability to take up exogenously supplied polyadenylated RNA and express the encoded information in a specific manner. This expression is shown to exhibit tissue specificity. Analysis of creatine kinase activity monitored at various times of incubation in the presence of either polyadenylated or nonpolyadenylated RNA indicates that only the poly(A)+ mRNA is capable of being actively translated. Radioactively labled poly(A)+ mRNA is taken up by the cell cultures in a time-dependent manner and subsequently shown to be associated with polysomes. This association with polysomes does not occur in the presence of puromycin and is unaffected by actinomycin D. Thus, nonspecific interaction with polysomes and induction of new RNA synthesis are ruled out and the association of the exogenously supplied poly(A)+ mRNA with polysomes is indicative of its translation in the recipient cells. When heterologous mRNA (globin) is supplied to the myoblasts, it is also taken up and properly translated. In addition, exogenously supplied myosin heavy chain mRNA is found associated with polysomes consisting of 4-10 ribosomes in myoblast cell cultures while in myotubes it is associated with very large polysomes, thus reflecting the different translational efficiencies that this message exhibits at two very different stages of myogenesis. The results indicate that muscle cell cultures can serve as an in vitro system to study translational controls and their roles in development.  相似文献   

16.
Thrombin exerts a number of effects on skeletal myoblasts in vitro. It stimulates proliferation and intracellular calcium mobilization and inhibits differentiation and apoptosis induced by serum deprivation in these cells. Many cellular responses to thrombin are mediated by protease-activated receptor-1 (PAR-1). Expression of PAR-1 is present in mononuclear myoblasts in vitro, but repressed when fusion occurs to form myotubes. In the current study, we used PAR-1-null mice to determine which of thrombin's effects on myoblasts are mediated by PAR-1. Thrombin inhibited fusion almost as effectively in cultures prepared from the muscle of PAR-1-null myoblasts as in cultures prepared from wild-type mice. Apoptosis was inhibited as effectively in PAR-1-null myoblasts as in wild-type myoblasts. These effects in PAR-1-null myoblasts were mediated by a secreted inhibitor of apoptosis and fusion, as demonstrated previously for normal rat myoblasts. Thrombin failed to induce an intracellular calcium response in PAR-1-null myoblast cultures, although these cells were able to mobilize intracellular calcium in response to activation of other receptors. PAR-1-null myoblasts also failed to proliferate in response to thrombin. These results demonstrate that thrombin's effects on myoblast apoptosis and fusion are not mediated by PAR-1 and that PAR-1 is the only thrombin receptor capable of inducing proliferation and calcium mobilization in neonatal mouse myoblasts.  相似文献   

17.
18.
When cells are briefly exposed to cis-diamminedichloroplatinum (II) before lysis in high sodium dodecyl sulfate-urea solutions, the high molecular-weight nucleic acids pelleted by ultracentrifugation contain an increased level of bound proteins when compared to a similar fraction from untreated cells. Subsequent shearing of the pelleted DNA followed by treatment with DNase permits electrophoretic and immunoblot analysis of the crosslinked proteins. In the present study such experiments were carried out with reference to nuclear envelope pore complex proteins in the differentiating L8 rat skeletal muscle cells. The results show that (i) whereas the major lamin proteins crosslinked to DNA in both myoblast and myotubes, lamin B is crosslinked to a greater extent to DNA in myotubes; (ii) a 62-kDa lectin-binding glycoprotein is apparently situated differently with respect to DNA in myotube nuclei; and (iii) the crosslinking pattern of the nuclear matrix proteins to DNA is qualitatively similar in myoblast and myotubes. In addition, lamin C', a modified form of lamin C, not observed in intact nonmuscle cells previously [Glass et al. (1985) J. Biol. Chem. 260, 1895-1900], exists as a native component of the nuclear lamina in rat skeletal myotubes but not in myoblasts. These results point to significant structural alterations in the proteins of the nuclear lamina-pore complex during myogenesis.  相似文献   

19.
Specific DNA fragments complementary to the 3' untranslated regions of the beta-, alpha-cardiac, and alpha-skeletal actin mRNAs were used as in situ hybridization probes to examine differential expression and distribution of these mRNAs in primary myogenic cultures. We demonstrated that prefusion bipolar-shaped cells derived from day 3 dissociated embryonic somites were equivalent to myoblasts derived from embryonic day 11-12 pectoral tissue with respect to the expression of the alpha-cardiac actin gene. Fibroblasts present in primary muscle cultures were not labeled by the alpha-cardiac actin gene probe. Since virtually all of the bipolar cells express alpha-cardiac actin mRNA before fusion, we suggest that the bipolar phenotype may distinguish a committed myogenic cell type. In contrast, alpha-skeletal actin mRNA accumulates only in multinucleated myotubes and appears to be regulated independently from the alpha-cardiac actin gene. Accumulation of alpha- skeletal but not alpha-cardiac actin mRNA can be blocked by growth in Ca2+-deficient medium which arrests myoblast fusion. Thus, the sequential appearance of alpha-cardiac and then alpha-skeletal actin mRNA may result from factors that arise during terminal differentiation. Finally, the beta-actin mRNA was located in both fibroblasts and myoblasts but diminished in content during myoblast fusion and was absent from differentiated myotubes. It appears that in primary myogenic cultures, an asynchronous stage-dependent induction of two different alpha-striated actin mRNA species occurs concomitant with the deinduction of the nonmuscle beta-actin gene.  相似文献   

20.
The partial amino acid sequence of the mouse 14 kDa beta-galactoside-binding lectin has been deduced from cDNA clones corresponding to 86% of the coding sequence and extending to the polyadenylation signal. The deduced amino acid sequence for the murine lectin shows 94% identity with the rat, 89% with human, 86% with bovine and 46% with the chicken 14 kDa lectins. A cDNA probe has been used to analyse genomic DNA and identify a single mRNA of approx. 570 bp in 3T3 fibroblasts, murine erythroleukaemia cells and the murine basement-membrane-secreting Engelbreth-Holm-Swarm tumour. Analysis of free and bound polyribosomes has shown that the lectin message is translated on free cytoplasmic ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号