首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

2.
Multiple sclerosis (MS), a human demyelinating disease, is thought to be caused by an autoimmunologic process, and myelin basic protein (MBP) is considered a likely autoantigen. Studies of T cell lines (TCL) responding to different parts of the MBP molecule have indicated that amino acids 87 through 106 contain an immunodominant epitope of MBP. We have demonstrated previously that amino acids 89 through 99 represent the core of this 87-106 peptide epitope. Importantly, this epitope is not only encephalitogenic in SJL/J mice and Lewis rats but also has been shown to be recognized by human cytotoxic TCL in the context of four HLA-DR molecules that are associated with MS in different geographic areas. If the immune response to MBP peptide 87-106 was homogeneous with respect to epitope specificity and TCR usage, specific immunotherapies targeting the interaction of peptide, MHC, and TCR might be possible. In this study, the fine specificity of 29 CD4+ cytotoxic, long term, and limiting dilution TCL that had been generated against whole MBP and were derived from four MS patients and two healthy relatives was dissected using truncated and alanine-substituted peptides for the 87-106 peptide. In addition, the TCR alpha and beta chain usage of 15 CD4+ TCL was determined. Using truncated peptides, the presence of several nested immunogenic epitopes within amino acids 87 to 106 was demonstrated. TCL with identical restriction elements and similar responses to truncated peptides could be differentiated further using alanine-substituted peptides. Finally, heterogeneity of TCR usage was shown not only for those lines that differed in their peptide specificity but also for some that showed identical responses and were restricted by the same HLA-DR antigen. In conclusion, the CD4+ cytotoxic T cell response to the immunodominant MBP peptide 87-106 demonstrates a high degree of heterogeneity at the level of fine specificity and TCR usage. These findings indicate that specific immunotherapies aimed at TCR in MS will probably be more complicated than previously anticipated.  相似文献   

3.
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.  相似文献   

4.

Background

Epstein-Barr virus (EBV) infection represents a major environmental risk factor for multiple sclerosis (MS), with evidence of selective expansion of Epstein-Barr Nuclear Antigen-1 (EBNA1)-specific CD4+ T cells that cross-recognize MS-associated myelin antigens in MS patients. HLA-DRB1*15-restricted antigen presentation also appears to determine susceptibility given its role as a dominant risk allele. In this study, we have utilised standard and next-generation sequencing techniques to investigate EBNA-1 sequence variation and its relationship to HLA-DR15 binding affinity, as well as examining potential cross-reactive immune targets within the central nervous system proteome.

Methods

Sanger sequencing was performed on DNA isolated from peripheral blood samples from 73 Western Australian MS cases, without requirement for primary culture, with additional FLX 454 Roche sequencing in 23 samples to identify low-frequency variants. Patient-derived viral sequences were used to predict HLA-DRB1*1501 epitopes (NetMHCII, NetMHCIIpan) and candidates were evaluated for cross recognition with human brain proteins.

Results

EBNA-1 sequence variation was limited, with no evidence of multiple viral strains and only low levels of variation identified by FLX technology (8.3% nucleotide positions at a 1% cut-off). In silico epitope mapping revealed two known HLA-DRB1*1501-restricted epitopes (‘AEG’: aa 481–496 and ‘MVF’: aa 562–577), and two putative epitopes between positions 502–543. We identified potential cross-reactive targets involving a number of major myelin antigens including experimentally confirmed HLA-DRB1*15-restricted epitopes as well as novel candidate antigens within myelin and paranodal assembly proteins that may be relevant to MS pathogenesis.

Conclusions

This study demonstrates the feasibility of obtaining autologous EBNA-1 sequences directly from buffy coat samples, and confirms divergence of these sequences from standard laboratory strains. This approach has identified a number of immunogenic regions of EBNA-1 as well as known and novel targets for autoreactive HLA-DRB1*15-restricted T cells within the central nervous system that could arise as a result of cross-reactivity with EBNA-1-specific immune responses.  相似文献   

5.
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the CNS. Though originally believed to be CD4-mediated, additional immune effector mechanisms, including myelin-specific CD8(+) T cells, are now proposed to participate in the pathophysiology of MS. To study the immunologic and encephalitogenic behavior of HLA-A*0201-binding myelin-derived epitopes in vivo, we used a humanized HLA-A*0201-transgenic mouse model. Eight HLA-A*0201-binding peptides derived from myelin oligodendrocyte glycoprotein (MOG), an immunodominant myelin self-Ag, were identified in silico. After establishing their relative affinity for HLA-A*0201 and their capacity to form stable complexes with HLA-A*0201 in vitro, their immunological characteristics were studied in HLA-A*0201-transgenic mice. Five MOG peptides, which bound stably to HLA-A*0201 exhibited strong immunogenicity by inducing a sizeable MOG-specific HLA-A*0201-restricted CD8(+) T cell response in vivo. Of these five candidate epitopes, four were processed by MOG-transfected RMA target cells and two peptides proved immunodominant in vivo in response to a plasmid-encoding native full-length MOG. One of the immunodominant MOG peptides (MOG(181)) generated a cytotoxic CD8(+) T cell response able to aggravate CD4(+)-mediated EAE. Therefore, this detailed in vivo characterization provides a hierarchy of candidate epitopes for MOG-specific CD8(+) T cell responses in HLA-A*0201 MS patients identifying the encephalitogenic MOG(181) epitope as a primary candidate.  相似文献   

6.
The antigenic determinant recognized by a HLA-DPw4-restricted human T cell clone specific for rabies virus was identified by using a vaccinia-rabies nonstructural phosphoprotein recombinant virus and synthetic peptides of the sequence of rabies nonstructural Ag. These peptides were selected on the basis of three models that predict T cell epitopes. The antigenic determinant recognized by the rabies virus-specific T cell clone contained a five-amino acid segment highly homologous to a sequence found in a hepatitis B surface Ag epitope that stimulates human T cells in the context of the HLA-DPw4. A preliminary model of DPw4-restricted T cell determinants is elaborated based on a hypothesis of how the 2 alpha-helical peptides may bind to this MHC molecule. Results are further discussed in the context of the usefulness in identifying DPw4-restricted T cell epitopes for the production of synthetic vaccines because this MHC class II molecule is found with high frequency in the population.  相似文献   

7.
A panel of 17 myelin basic protein (MBP)-specific T lymphocyte clones were generated from four multiple sclerosis (MS) patients. All T cell clones expressed CD4 phenotype and 14 clones exhibited substantial cytotoxic activity on MBP-coated target cells. T cell recognition sites of the clones on human MBP were identified by using MBP fragments and synthetic peptides. Despite the fact that at least three epitopes were defined, these T cell clones displayed a striking bias to the C-terminal peptide 149-171 independent of differences in HLA-DR and DQ expression. In addition, the T cell responses of the clones appeared to be restricted by HLA-DR molecules irrespective of peptide specificities. The present study suggests an immunodominant property of the C-terminal peptide for HLA-DR-restricted T cell responses to MBP. However, its association with encephalitogenicity in humans and its potential pathologic importance in MS await further clarification.  相似文献   

8.
Helper T lymphocytes that control CD8(+) T-cell and antibody responses are key elements for the resolution of infection by the hepatitis B virus and for the development of effective immunological memory after hepatitis B vaccination. We have used H-2 class II-deficient mice that express the human MHC class II molecule, HLA-DR1, to identify novel hepatitis B virus envelope-derived T helper epitopes. We confirmed the immunogenicity of a previously described HLA-DR1-restricted epitope, and identified three novel epitopes. CD4(+) T-cell immune responses against these epitopes were detected in peripheral blood mononuclear cells from HLA-DR1(+) individuals vaccinated against hepatitis B. We showed that subjects receiving the currently available hepatitis B vaccines do not develop cross-reactive T helper responses against one of the novel epitopes which are structurally variable between different hepatitis B virus subtypes. These findings highlight the need for developing vaccines against a wider range of viral subtypes, and establish humanized mice as a convenient tool for identifying new immunogenic epitopes from pathogens.  相似文献   

9.
Following intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV), susceptible mouse strains develop a chronic demyelinating disease characterized by mononuclear cell-rich infiltrates in the central nervous system. Current evidence strongly supports an immune-mediated basis for myelin breakdown, with an effector role proposed for TMEV-specific, major histocompatibility class II-restricted delayed-type hypersensitivity, which temporally correlates with disease onset and remains chronically elevated in susceptible mice. This study examined the fine specificity of class II-restricted T cell responses in TMEV-infected mice to better define the relevant virus-encoded T cell determinant(s) responsible for triggering the demyelinating process, and to determine if class II-restricted neuroantigen-specific autoimmune responses could be detected in mice with TMEV-induced demyelination. The data clearly show that T cell responses in TMEV-infected mice are directed against determinants shared by closely related TMEV strains and are cross-reactive with related picornaviruses, such as encephalomyocarditis virus. In contrast, class II-restricted autoimmune responses against syngeneic mouse spinal cord homogenate and the two major protein components of myelin, myelin basic protein and proteolipid protein, are not demonstrable in susceptible SJL/J mice undergoing chronic TMEV-induced demyelinating disease, but are readily seen in SJL/J mice displaying chronic, relapsing experimental allergic encephalomyelitis. Cross-reactivity (or lack thereof), as determined by functional T cell analyses, was found to correlate with the extent of exact amino acid homology between the TMEV capsid proteins, the two neuroantigens, and related picornaviruses. The data thus do not support a major role for autoimmune responses against myelin proteins in TMEV-induced demyelinating disease, but are consistent with our previously proposed hypothesis that TMEV-specific T cell responses constitute a major effector mechanism of myelin breakdown.  相似文献   

10.
Trypanosoma cruzi-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of parasite growth and will play an important part in therapeutic and prophylactic T. cruzi vaccines. The identification of parasite-specific epitopes that are efficiently recognized by CTLs is the first step in the development of future vaccines. HLA-A2 transgenic mice (HHD) were shown to provide a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, since these mice are endowed with a CTL repertoire representative of HLA-A2.1 individuals. Here, we describe the immunological characterization of T-cell epitopes of the T. cruzi ribosomal P2 protein (TcP2beta) that are recognized by HLA-A*0201-restricted CTLs in HLA-transgenic mice and humans. Epitopes identified in the present study do not share sequence homology with the homologous human or murine counterparts and so they should not induce any autoreactive response. Moreover, HHD mice vaccinated with these peptide epitopes have reduced parasitemia after challenge with a lethal T. cruzi infection. Hence, these epitopes represent potential subunit components of multi-protein vaccines to prevent Chagas' disease.  相似文献   

11.
The HLA-DR2 restriction of the T cell response to myelin basic protein (MBP) was studied using murine L cells transfected with DRalpha and either DR2a or DR2b beta-chain cDNA. DR2a and DR2b represent the two isotypic DRbeta chains expressed in DR2Dw2 haplotypes. Eleven MBP-specific cytolytic T cell lines derived from patients with multiple sclerosis were isolated. Two of these cell lines recognized MBP-pulsed DR2-expressing L cell transfectants and four of them could only recognize the L cells if the adhesion molecule ICAM-1 was expressed in addition to HLA-DR2. Five of the six lines were restricted by HLA-DR2a; one line recognized Ag in conjunction with DR2b, but only if ICAM-1 was coexpressed. The remaining five lines did not lyse MBP-pulsed L cells. The ability of the DR2b molecules on transfected cells to stimulate T cells was confirmed with DR2b-allospecific T cell clones. Although five MBP-specific lines were restricted by DR2a, they recognized different parts of the MBP molecule, as demonstrated by the presentation of shorter peptides. Thus, our results suggest that DR2a is a dominant restriction molecule in MBP-specific responses by DR2+ MS patients. The results also indicate that the reported heterogeneity in MBP epitopes recognized by DR2-restricted T cells, may not be due to the use of different restriction elements but rather to the binding of different MBP peptides to DR2a molecules.  相似文献   

12.
Several HLA-A*0201-restricted peptide epitopes that can be used as targets for active immunotherapy have been identified within melanocyte differentiation proteins. However, uncertainty exists as to the most effective way to elicit CD8+ T cells with these epitopes in vivo. We report the use of transgenic mice expressing a derivative of HLA-A*0201, and dendritic cells, to enhance the activation of CD8+ T cells that recognize peptide epitopes derived from human tyrosinase and glycoprotein 100. We find that by altering the cell surface density of the immunizing peptide on the dendritic cells, either by pulsing with higher concentrations of peptide, or by changing the MHC-peptide-binding affinity by generating variants of the parent peptides, the size of the activated CD8+ T cell populations can be modulated in vivo. Significantly, the density of peptide that produced the largest response was less than the maximum density achievable through short-term peptide pulsing. We have also found, however, that while some variant peptides are effective at eliciting both primary and recall CD8+ T cell responses that can recognize the parental epitope, other variant epitopes lead to the outgrowth of CD8+ T cells that only recognize the variant. HLA-A*0201 transgenic mice provide an important model to define which peptide variants are most likely to stimulate CD8+ T cell populations that recognize the parental, melanoma-specific peptide.  相似文献   

13.
The sequential emergence of specific T lymphocyte-mediated immune reactivity directed against multiple distinct myelin epitopes (epitope spreading) has been associated with clinical relapses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Based on this association, an appealing and plausible model for immune-mediated progression of the advancing clinical course in MS and EAE has been proposed in which epitope spreading is the cause of clinical relapses in T cell-mediated CNS inflammatory diseases. However, the observed association between epitope spreading and disease progression is not universal, and absolute requirements for epitope spreading in progressive EAE have not been tested in the absence of multiple T cell specificities, because most prior studies have been conducted in immunocompetent mouse strains that possessed broad TCR repertoires. Consequently, the precise nature of a causal relationship between epitope spreading and disease progression remains uncertain. To determine whether relapsing or progressive EAE can occur in the absence of epitope spreading, we evaluated the course of disease in mice which possessed only a single myelin-specific TCR. These mice (transgenic/SCID +/+) exhibited a progressive and sometimes remitting/relapsing disease course in the absence of immune reactivity to multiple, spreading myelin epitopes. The results provide direct experimental evidence relevant to discussions on the mechanisms of disease progression in MS and EAE.  相似文献   

14.
The human MHC class II genes are associated with genetic susceptibility to multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS of presumed autoimmune origin. These genes encode for proteins responsible for shaping immune response. The exact role of HLA-DQ and -DR genes in disease pathogenesis is not well-understood due to the high polymorphism, linkage disequilibrium, and heterogeneity of human populations. The advent of HLA class II-transgenic (Tg) mice has helped in answering some of these questions. Previously, using single-Tg mice (expressing the HLA-DR or -DQ gene), we showed that proteolipid protein (PLP)(91-110) peptide induced classical experimental autoimmune encephalomyelitis only in DR3.Abeta degrees mice, suggesting that DR3 (DRB1*0301) is a disease susceptible gene in the context of PLP. Human population studies have suggested that HLA-DQ6 (DQB1*0601) may be a protective gene in MS. To test this disease protection in an experimental model, we generated double-Tg mice expressing both HLA-DR3 and -DQ6. Introduction of DQ6 onto DR3-Tg mice led to a decrease in disease incidence on immunization with PLP(91-110) peptide indicating a dominant protective role of DQ6. This protective effect is due to high levels of IFN-gamma produced by DQ6-restricted T cells, which suppressed proliferation of encephalitogenic DR3-restricted T cells by inducing apoptosis. Our study indicates that DQ6 modifies the PLP(91-110)-specific T cell response in DR3 through anti-inflammatory effects of IFN-gamma, which is protective for experimental autoimmune encephalomyelitis. Thus, our double-Tg mouse provides a novel model in which to study epistatic interactions between HLA class II molecules in MS.  相似文献   

15.
Prostatic acid phosphatase (PAP) has been investigated as the target of several antigen-specific anti-prostate tumor vaccines. The goal of antigen-specific active immunotherapies targeting PAP would ideally be to elicit PAP-specific CD8+ effector T cells. The identification of PAP-specific CD8+ T-cell epitopes should provide a means of monitoring the immunological efficacy of vaccines targeting PAP, and these epitopes might themselves be developed as vaccine antigens. In the current report, we hypothesized that PAP-specific epitopes might be identified by direct identification of pre-existing CD8+ T cells specific for HLA-A2-restricted peptides derived from PAP in the blood of HLA-A2-expressing individuals. 11 nonamer peptides derived from the amino acid sequence of PAP were used as stimulator antigens in functional ELISPOT assays with peripheral blood mononuclear cells from 20 HLA-A2+ patients with prostate cancer or ten healthy blood donors. Peptide-specific T cells were frequently identified in both groups for three of the peptides, p18–26, p112–120, and p135–143. CD8+ T-cell clones specific for three peptides, p18–26, p112–120, and p299–307, confirmed that these are HLA-A2-restricted T-cell epitopes. Moreover, HLA-A2 transgenic mice immunized with a DNA vaccine encoding PAP developed epitope-specific responses for one or more of these three peptide epitopes. We propose that this method to first identify epitopes for which there are pre-existing epitope-specific T cells could be used to prioritize MHC class I-specific epitopes for other antigens. In addition, we propose that the epitopes identified here could be used to monitor immune responses in HLA-A2+ patients receiving vaccines targeting PAP to identify potentially therapeutic immune responses.  相似文献   

16.
We previously described a synthetic peptide of myelin proteolipid protein (PLP), peptide 139-151, which induces experimental allergic encephalomyelitis in SJL/J (H-2s) mice. We have now identified an additional determinant, PLP residues 178-191, that is also a potent encephalitogen in this strain. When PLP peptide 178-191 was compared with peptide 139-151 on an equimolar basis, the day of onset of disease induced by PLP 178-191 was earlier, but the incidence, severity, and histologic features were indistinguishable. Lymph node cells from animals immunized with the whole PLP molecule responded to both PLP 178-191 and 139-151, suggesting immunologic codominance of the two epitopes. PLP 178-191 elicited stronger proliferative responses and this may relate to the earlier onset of disease induced with this peptide. Two CD4+, peptide-specific, I-A(s)-restricted T cell lines, selected by stimulation of lymph node cells with either PLP 178-191 or 139-151, were each encephalitogenic in naive syngeneic mice. The presence of multiple encephalitogenic codominant PLP epitopes within a single mouse strain emphasizes the complexity of the immune response to PLP and its potential as a target Ag in autoimmune demyelinating diseases.  相似文献   

17.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a chronic-progressive, immune-mediated CNS demyelinating disease and a relevant model of multiple sclerosis. Myelin destruction is initiated by TMEV-specific CD4(+) T cells targeting persistently infected CNS-resident APCs leading to activation of myelin epitope-specific CD4(+) T cells via epitope spreading. We examined the temporal development of virus- and myelin-specific T cell responses and acquisition of virus and myelin epitopes by CNS-resident APCs during the chronic disease course. CD4(+) T cell responses to virus epitopes arise within 1 wk after infection and persist over a >300-day period. In contrast, myelin-specific T cell responses are first apparent approximately 50-60 days postinfection, appear in an ordered progression associated with their relative encephalitogenic dominance, and also persist. Consistent with disease initiation by virus-specific CD4(+) T cells, CNS mononuclear cells from TMEV-infected SJL mice endogenously process and present virus epitopes throughout the disease course, while myelin epitopes are presented only after initiation of myelin damage (>50-60 days postinfection). Activated F4/80(+) APCs expressing high levels of MHC class II and B7 costimulatory molecules and ingested myelin debris chronically accumulate in the CNS. These results suggest a process of autoimmune induction in which virus-specific T cell-mediated bystander myelin destruction leads to the recruitment and activation of infiltrating and CNS-resident APCs that process and present endogenous myelin epitopes to autoreactive T cells in a hierarchical order.  相似文献   

18.
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.  相似文献   

19.
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263-275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263-275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.  相似文献   

20.
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263–275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263–275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号