首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new algorithm for protein classification and the detection of remote homologs. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well-balanced manner. This is in contrast to established methods such as profiles and profile hidden Markov models which focus on vertical information as they model the columns of the alignment independently and to family pairwise search which focuses on horizontal information as it treats given sequences separately. In our setting, we want to select from a given database of "candidate sequences" those proteins that belong to a given superfamily. In order to do so, each candidate sequence is separately tested against a multiple alignment of the known members of the superfamily by means of a new jumping alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and computes a local alignment of a single sequence and a multiple alignment. In contrast to traditional methods, however, this alignment is not based on a summary of the individual columns of the multiple alignment. Rather, the candidate sequence is at each position aligned to one sequence of the multiple alignment, called the "reference sequence." In addition, the reference sequence may change within the alignment, while each such jump is penalized. To evaluate the discriminative quality of the jumping alignment algorithm, we compare it to profiles, profile hidden Markov models, and family pairwise search on a subset of the SCOP database of protein domains. The discriminative quality is assessed by median false positive counts (med-FP-counts). For moderate med-FP-counts, the number of successful searches with our method is considerably higher than with the competing methods.  相似文献   

2.
MOTIVATION: Due to the importance of considering secondary structures in aligning functional RNAs, several pairwise sequence-structure alignment methods have been developed. They use extended alignment scores that evaluate secondary structure information in addition to sequence information. However, two problems for the multiple alignment step remain. First, how to combine pairwise sequence-structure alignments into a multiple alignment and second, how to generate secondary structure information for sequences whose explicit structural information is missing. RESULTS: We describe a novel approach for multiple alignment of RNAs (MARNA) taking into consideration both the primary and the secondary structures. It is based on pairwise sequence-structure comparisons of RNAs. From these sequence-structure alignments, libraries of weighted alignment edges are generated. The weights reflect the sequential and structural conservation. For sequences whose secondary structures are missing, the libraries are generated by sampling low energy conformations. The libraries are then processed by the T-Coffee system, which is a consistency based multiple alignment method. Furthermore, we are able to extract a consensus-sequence and -structure from a multiple alignment. We have successfully tested MARNA on several datasets taken from the Rfam database.  相似文献   

3.
MOTIVATION: Multiple sequence alignment is an important tool in computational biology. In order to solve the task of computing multiple alignments in affordable time, the most commonly used multiple alignment methods have to use heuristics. Nevertheless, the computation of optimal multiple alignments is important in its own right, and it provides a means of evaluating heuristic approaches or serves as a subprocedure of heuristic alignment methods. RESULTS: We present an algorithm that uses the divide-and-conquer alignment approach together with recent results on search space reduction to speed up the computation of multiple sequence alignments. The method is adaptive in that depending on the time one wants to spend on the alignment, a better, up to optimal alignment can be obtained. To speed up the computation in the optimal alignment step, we apply the alpha(*) algorithm which leads to a procedure provably more efficient than previous exact algorithms. We also describe our implementation of the algorithm and present results showing the effectiveness and limitations of the procedure.  相似文献   

4.
An algorithm is presented for the multiple alignment of protein sequences that is both accurate and rapid computationally. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, two sequences are aligned, then the third sequence is aligned against the alignment of both sequences one and two. Similarly, the fourth sequence is aligned against one, two and three. This is repeated until all sequences have been aligned. Iteration is then performed to yield a final alignment. The accuracy of sequence alignment is evaluated from alignment of the secondary structures in a family of proteins. For the globins, the multiple alignment was on average 99% accurate compared to 90% for pairwise comparison of sequences. For the alignment of immunoglobulin constant and variable domains, the use of many sequences yielded an alignment of 63% average accuracy compared to 41% average for individual variable/constant alignments. The multiple alignment algorithm yields an assignment of disulphide connectivity in mammalian serotransferrin that is consistent with crystallographic data, whereas pairwise alignments give an alternative assignment.  相似文献   

5.

Background  

Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms.  相似文献   

6.
Data alignment is one of the first key steps in single cell analysis for integrating multiple datasets and performing joint analysis across studies. Data alignment is challenging in extremely large datasets, however, as the major of the current single cell data alignment methods are not computationally efficient. Here, we present VIPCCA, a computational framework based on non-linear canonical correlation analysis for effective and scalable single cell data alignment. VIPCCA leverages both deep learning for effective single cell data modeling and variational inference for scalable computation, thus enabling powerful data alignment across multiple samples, multiple data platforms, and multiple data types. VIPCCA is accurate for a range of alignment tasks including alignment between single cell RNAseq and ATACseq datasets and can easily accommodate millions of cells, thereby providing researchers unique opportunities to tackle challenges emerging from large-scale single-cell atlas.  相似文献   

7.
MUSTANG: a multiple structural alignment algorithm   总被引:1,自引:0,他引:1  
Multiple structural alignment is a fundamental problem in structural genomics. In this article, we define a reliable and robust algorithm, MUSTANG (MUltiple STructural AligNment AlGorithm), for the alignment of multiple protein structures. Given a set of protein structures, the program constructs a multiple alignment using the spatial information of the C(alpha) atoms in the set. Broadly based on the progressive pairwise heuristic, this algorithm gains accuracy through novel and effective refinement phases. MUSTANG reports the multiple sequence alignment and the corresponding superposition of structures. Alignments generated by MUSTANG are compared with several handcurated alignments in the literature as well as with the benchmark alignments of 1033 alignment families from the HOMSTRAD database. The performance of MUSTANG was compared with DALI at a pairwise level, and with other multiple structural alignment tools such as POSA, CE-MC, MALECON, and MultiProt. MUSTANG performs comparably to popular pairwise and multiple structural alignment tools for closely related proteins, and performs more reliably than other multiple structural alignment methods on hard data sets containing distantly related proteins or proteins that show conformational changes.  相似文献   

8.
Since traditional multiple alignment formulations are NP-hard, heuristics are commonly employed to find acceptable alignments with no guaranteed performance bound. This causes a substantial difficulty in understanding what the resulting alignment means and in assessing the quality of these alignments. We propose an alternative formulation of multiple alignment based on the idea of finding a multiple alignment of k sequences which preserves k - 1 pairwise alignments as specified by edges of a given tree. Although it is well known that such a preserving alignment always exists, it did not become a mainstream method for multiple alignment since it seems that a lot of information is lost from ignoring pairwise similarities outside the tree. In contrast, by using pairwise alignments that incorporate consistency information from other sequences, we show that it is possible to obtain very good accuracy with the preserving alignment formulation. We show that a reasonable objective function to use is to find the shortest preserving alignment, and, by a reduction to a graph-theoretic problem, that the problem of finding the shortest preserving multiple alignment can be solved in polynomial time. We demonstrate the success of this approach on three sets of benchmark multiple alignments by using consistency-based pairwise alignments from the first stage of two of the best performing progressive alignment algorithms TCoffee and ProbCons and replace the second heuristic progressive step of these algorithms by the exact preserving alignment step. We apply this strategy to TCoffee and show that our approach outperforms TCoffee on two of the three test sets. We apply the strategy to a variant of ProbCons with no iterative refinements and show that our approach achieves similar or better accuracy except on one test set. We also compare our performance to ProbCons with iterative refinements and show that our approach achieves similar or better accuracy on many subcategories even without further refinements. The most important advantage of the preserving alignment formulation is that we are certain that we can solve the problem in polynomial time without using a heuristic. A software program implementing this approach (PSAlign) is available at http://faculty.cs.tamu.edu/shsze/psalign.  相似文献   

9.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

10.
SUMMARY: SQUINT is a sequence alignment tool, and combines both automated progressive sequence alignment with facilities for manual editing. The program imports nucleotide or amino acid sequence multiple alignment files in standard formats, and permits users to view two translations of the same multiple alignment simultaneously. Edits in one view are instantaneously reflected in the other, and the scoring cost of the changes are shown in real-time. Progressive multiple alignments, using a variety of alignment parameters, can be performed on any block of sequences, including blocks embedded in the existing alignment. AVAILABILITY: The software is freely available for download at http://www.cebl.auckland.ac.nz  相似文献   

11.
12.
在生物信息学研究中,生物序列比对问题占有重要的地位。多序列比对问题是一个NPC问题,由于时间和空间的限制不能够求出精确解。文中简要介绍了Feng和Doolittle提出的多序列比对算法的基本思想,并改进了该算法使之具有更好的比对精度。实验结果表明,新算法对解决一般的progressive多序列比对方法中遇到的局部最优问题有较好的效果。  相似文献   

13.
Multiple sequence alignment is typically the first step in estimating phylogenetic trees, with the assumption being that as alignments improve, so will phylogenetic reconstructions. Over the last decade or so, new multiple sequence alignment methods have been developed to improve comparative analyses of protein structure, but these new methods have not been typically used in phylogenetic analyses. In this paper, we report on a simulation study that we performed to evaluate the consequences of using these new multiple sequence alignment methods in terms of the resultant phylogenetic reconstruction. We find that while alignment accuracy is positively correlated with phylogenetic accuracy, the amount of improvement in phylogenetic estimation that results from an improved alignment can range from quite small to substantial. We observe that phylogenetic accuracy is most highly correlated with alignment accuracy when sequences are most difficult to align, and that variation in alignment accuracy can have little impact on phylogenetic accuracy when alignment error rates are generally low. We discuss these observations and implications for future work.  相似文献   

14.

Background  

Two central problems in computational biology are the determination of the alignment and phylogeny of a set of biological sequences. The traditional approach to this problem is to first build a multiple alignment of these sequences, followed by a phylogenetic reconstruction step based on this multiple alignment. However, alignment and phylogenetic inference are fundamentally interdependent, and ignoring this fact leads to biased and overconfident estimations. Whether the main interest be in sequence alignment or phylogeny, a major goal of computational biology is the co-estimation of both.  相似文献   

15.
CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.  相似文献   

16.
While most of the recent improvements in multiple sequence alignment accuracy are due to better use of vertical information, which include the incorporation of consistency-based pairwise alignments and the use of profile alignments, we observe that it is possible to further improve accuracy by taking into account alignment of neighboring residues when aligning two residues, thus making better use of horizontal information. By modifying existing multiple alignment algorithms to make use of horizontal information, we show that this strategy is able to consistently improve over existing algorithms on a few sets of benchmark alignments that are commonly used to measure alignment accuracy, and the average improvements in accuracy can be as much as 1–3% on protein sequence alignment and 5–10% on DNA/RNA sequence alignment. Unlike previous algorithms, consistent average improvements can be obtained across all identity levels.  相似文献   

17.
Multiple sequence alignment with hierarchical clustering.   总被引:155,自引:8,他引:147       下载免费PDF全文
F Corpet 《Nucleic acids research》1988,16(22):10881-10890
An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, a hierarchical clustering of the sequences is performed using the matrix of the pairwise alignment scores. The closest sequences are aligned creating groups of aligned sequences. Then close groups are aligned until all sequences are aligned in one group. The pairwise alignments included in the multiple alignment form a new matrix that is used to produce a hierarchical clustering. If it is different from the first one, iteration of the process can be performed. The method is illustrated by an example: a global alignment of 39 sequences of cytochrome c.  相似文献   

18.
MOTIVATION: Multiple sequence alignment is an important tool to understand and analyze functions of homologous proteins. However, the logic of residue conservation/variation is usually apparent only in three-dimensional (3D) space, not on a primary sequence level. Thus, in a traditional multiple alignment it is often difficult to directly visualize and analyze key residues because they are masked by other residues along the alignment. Here we present an integrated multiple alignment and 3D structure visualization program that can (1) map and highlight residues from a 1D alignment onto a 3D structure and vice versa and (2) display only the alignment of preselected, key residues. This program, called Visualize Structure Sequence Alignment, also has many other built-in tools that can help analyze multiple sequence alignments. AVAILABILITY: http://bioinformatics.burnham.org/liwz/vissa CONTACT: liwz@burnham.org.  相似文献   

19.
Nicholas HB  Ropelewski AJ  Deerfield DW 《BioTechniques》2002,32(3):572-4, 576, 578 passim
We present an overview of multiple sequence alignments to outline the practical consequences for the choices among different techniques and parameters. We begin with a discussion of the scoring methods for quantifying the quality of a multiple sequence alignment, followed by a discussion of the algorithms implemented within a variety of multiple sequence alignment programs. We also discuss additional alignment details such as gap penalty and distance metrics. The paper concludes with a discussion on how to improve alignment quality and the limitations of the techniques described in this paper  相似文献   

20.

Background  

The alignment of two or more protein sequences provides a powerful guide in the prediction of the protein structure and in identifying key functional residues, however, the utility of any prediction is completely dependent on the accuracy of the alignment. In this paper we describe a suite of reference alignments derived from the comparison of protein three-dimensional structures together with evaluation measures and software that allow automatically generated alignments to be benchmarked. We test the OXBench benchmark suite on alignments generated by the AMPS multiple alignment method, then apply the suite to compare eight different multiple alignment algorithms. The benchmark shows the current state-of-the art for alignment accuracy and provides a baseline against which new alignment algorithms may be judged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号