首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported complex effects of cytokine-containing T cell supernatants on the interleukin (IL)4 plus phorbol 12-myristate 13-acetate (PMA)-induced proliferative response of murine thymocytes. Here we show that recombinant murine IL-2, IL-6, and IFN-gamma each differentially regulate the IL-4/PMA-driven growth of thymocyte subpopulations. Thymocytes fractionated into four subpopulations on the basis of CD4 and CD8 expression were stimulated to proliferate by IL-4/PMA. Interferon-gamma (IFN-gamma) caused almost complete inhibition of the CD4+/CD8- response but had no measurable effect on the growth of CD4-/CD8+ or CD4-/CD8- populations. This inhibitory effect was also observed on splenic CD4+/CD8- T cells. In contrast, IL-6 strongly enhanced the proliferative response of CD4+/CD8- thymocytes, but showed no effect on peripheral CD4+/CD8- T cells, suggesting that IL-6 may be an important regulator of growth in the thymus. IL-2 also enhanced the proliferation of both CD4-/CD8+ and CD4-/CD8- thymocytes to IL-4 and PMA. To test whether the IL-4/PMA stimulus provided all the signals required to initiate growth in each subpopulation, we titrated cell number and examined the relationship between cell dose and cell response. Growth of CD8+/CD4- cells was cell density independent, indicating that IL-4/PMA is sufficient stimulus to induce growth of these cells. In contrast, growth of CD4-/CD8- and CD4+/CD8- cells is cell density dependent, suggesting a requirement for another signal provided by the cells themselves. These observations suggest that more signals remain to be identified in this thymocyte growth system.  相似文献   

2.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

3.
4.
The proliferative activity of thymocytes cultured with IL-2 and submitogenic concentrations of PHA is increased by 3- to 10-fold in the presence of IL-4. In contrast, IL-4 alone is unable to induce proliferative activity in thymocyte cultures and its synergistic activity is only apparent to concentrations of IL-2 above 1 U/ml. The costimulatory activity of IL-4 is abrogated by the monoclonal anti-IL-4 antibody 11B11. Furthermore, potentiation of the IL-2-mediated thymocyte proliferation is not seen with IL-1, IL-3, IFN-gamma, and granulocyte-macrophage CSF. Thymocytes are at least as responsive to IL-4 as B cells and the IL-4 costimulatory activity in fractionated thymocytes appears to be restricted mainly to the Lyt-2+/L3T4- population. In contrast, purified resting mature T cells do not respond to IL-4 plus IL-2, although they did proliferate in response to IL-4 in combination with PMA. These findings indicate that thymocytes and mature T cells are responsive to the costimulatory activity of IL-4 under quite different conditions, and that IL-4 may play an important role in thymocyte maturation in the thymus.  相似文献   

5.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

6.
The 10D1 Ag is a 90-kDa homodimeric molecule specifically expressed on a subpopulation of human T cells, and is involved in an alternative pathway of T cell activation. In the present study, we have examined the expression and function of the 10D1 Ag on human thymocytes. Three-color FMF analysis showed that the 10D1 Ag was highly expressed on minor but distinct subpopulations of double-negative and CD4 single-positive thymocytes, and weakly on a part of double-positive thymocytes, but not on CD8 single-positive thymocytes. In double-negative thymocytes, the vast majority of 10D1+ cells were immature thymocytes of CD7+2+3- phenotype. Interestingly, 10D1 mAb could induce the proliferation of CD4 single-positive thymocytes in the presence of goat anti-mouse Ig to cross-link the 10D1 Ag. The treatment of thymocytes with OKT4 mAb plus C but not with OKT8 mAb plus C totally abrogated the proliferative response induced by 10D1 mAb, indicating that the 10D1-responsible thymocytes were of CD4+8- phenotype. This 10D1 mAb-induced thymocyte proliferation was perfectly dependent on the endogenous IL-2/IL-2R system since a complete inhibition was observed with anti-IL-2 and anti-IL-2R mAb. The proliferating CD4 single positive thymocytes predominantly expressed the IL-2R alpha (p55) but not a detectable level of the IL-2R beta (p75). These results indicate that, although the 10D1 Ag can be detected on the CD7+2+3-4-8- thymocytes, its functional expression is restricted to a minor more mature CD4+ thymocyte population as well as in peripheral blood T cells, and the implications of these findings are discussed.  相似文献   

7.
Interleukin-2 receptors (IL-2R) are expressed on minor populations of immature and mature human thymocytes. These studies were designed to determine if immature T cells could respond to the mitogen phytohemagglutinin (PHA-P) plus IL-2 in vitro by increasing the expression of IL-2R and by proliferation. Using monoclonal antibodies to CD5 and magnetic immunobeads we were able to remove all mature, "bright" CD5+ cells from nylon wool-purified thymocytes and to obtain less mature cells which consisted almost completely of cells with the CD4+CD8+ phenotype. These immature cells were mostly "dim" CD5+ and less than 5% CD5- and a small percentage expressed the IL-2R. After culture in serum-free medium with PHA-P, these cells showed only a slight increase in the percentage of IL-2R+ cells and the addition of IL-2 did not increase the percentage of IL-2R+ cells and no proliferation was observed. Unseparated, nylon wool-purified thymocytes contained 14% bright CD5+ cells. These bright CD5+ cells had a mature phenotype of CD4+CD8- (52%) and CD4-CD8+ (27%) cells. A small percentage of these cells were IL-2R+. These bright CD5+IL-2R+ cells were predominantly mature CD4+CD8- cells as measured by three-color flow cytometry. After culture with PHA-P and IL-2, the percentage of IL-2R+ cells increased and they were now found not only on CD4+CD8- but also on CD4-CD8+ and on CD4+CD8+ cells. IL-2 plus PHA-P increased proliferation of these cells as compared to those cultured in medium with PHA-P without IL-2. Thus, we show that human immature thymocytes in contrast to mature thymocytes are not responsive to IL-2 as measured by a lack of IL-2R expression and proliferation. These data indicate that mature thymocytes can express a functional high affinity receptor for IL-2 and suggest that immature thymocytes may not possess a (functional) p75 chain of the IL-2R.  相似文献   

8.
Resting T cells are stimulated to synthesize DNA by IL-4 and phorbol myristate acetate (PMA). This response of T cells to IL-4 plus PMA is independent of the action of IL-2 as judged by 1) the lack of IL-2 in supernatants of stimulated cells, 2) the failure to detect IL-2 mRNA in stimulated cells by in situ hybridization, 3) the inability of anti-IL-2R antibody and of anti-IL-2 antibody to block responses to IL-4 plus PMA, and 4) the failure of cyclosporin A to block responses. T cells also respond to anti-CD3 antibodies and IL-4 in the presence of anti-IL-2R antibodies. IL-4 stimulation of growth of the long term T cell line HT-2 also appears to be independent of the action of IL-2. No IL-2 mRNA is found in IL-4-stimulated HT-2 cells by Northern blotting; the response of HT-2 cells to IL-4 is not blocked by anti-IL-2R antibodies; the response of HT-2 cells to IL-4 is not inhibited by cyclosporin A. Although IL-4 stimulation of T cells is independent of IL-2, IL-4 plus PMA treatment of resting T cells does cause enhanced expression of IL-2R and prepares cells to proliferate to IL-2 alone. In both these properties IL-4 resembles IL-2. These experiments lead us to conclude that IL-4 can act as an alternative to IL-2 as authentic T cell growth factor.  相似文献   

9.
IL-10, a novel growth cofactor for mature and immature T cells   总被引:27,自引:0,他引:27  
We identified a new cytokine, B cell-derived T cell growth factor (B-TCGF), that is produced by a murine B cell lymphoma and induces proliferation of mature and immature thymocytes in the presence of IL-2 and IL-4. Both adult and day 15 fetal thymocytes (CD4-8-, CD4+8-, CD4-8+) proliferate strongly in the presence of IL-2, IL-4, and B-TCGF. B-TCGF alone does not stimulate thymocyte proliferation. B-TCGF appears to be identical to a novel cytokine whose cDNA was recently isolated at our institution, cytokine synthesis-inhibitory factor (CSIF; IL-10). rIL-10 has B-TCGF activity, and mAb specific for IL-10 inhibit the B-TCGF activity present in CH12 supernatants. Further studies have shown that day 15 fetal thymocytes cultured in the presence of IL-10, IL-2, and IL-4 remain CD4- and CD8- but exhibit increased CD3 expression. Adult CD4- CD8- thymocytes cultured under the same conditions proliferate whether they are CD3+ or CD3-. The CD3- population becomes enriched in CD3+ cells after 4 days of culture. IL-10 is secreted by day 15 fetal thymocytes, adult thymocytes, and adult splenocytes when stimulated via their TCR. IL-10 is strongly homologous to the EBV gene BCRFI, and BCRFI has CSIF activity. In contrast to IL-10, BCRFI does not exhibit detectable thymocyte-stimulating activity, suggesting the existence of at least two functional epitopes on the IL-10 molecule.  相似文献   

10.
Many cytokines (including IL-1, IL-2, IL-4, IL-6, and TNF-alpha) have been shown to induce thymocyte proliferation in the presence of PHA. In this report, we demonstrate that certain cytokine combinations induce thymocyte proliferation in the absence of artificial comitogens. IL-1 alpha, IL-6, and TNF-alpha enhanced the proliferation of whole unseparated thymocytes in the presence of IL-2, whereas none of them induced thymocyte proliferation alone. In contrast, of these three enhancing cytokines, only IL-6 enhanced IL-4-induced proliferation. We also separated thymocytes into four groups based on their expression of CD4 and CD8, and investigated their responses to various cytokines. The results indicate that each cytokine combination affects different thymocyte subsets; thus, IL-1 alpha enhanced the proliferation of CD4-CD8- double negative (DN) thymocytes more efficiently than IL-6 in the presence of IL-2, whereas IL-6 enhanced the responses of CD4+CD8- and CD4-CD8+ single positive (SP) thymocytes to IL-2 or IL-4 better than IL-1 alpha. TNF-alpha enhanced the proliferation of both DN and both SP subsets in the presence of IL-2 and/or IL-7. None of these combinations induced the proliferation of CD4+CD8+ double positive thymocytes. Finally, DN were separated into CD3+ and CD3- populations and their responsiveness was investigated, because recent reports strongly suggest that CD3+ DN thymocytes are a mature subset of different lineage rather than precursors of SP thymocytes. CD3+ DN proliferated in response to IL-7, TNF-alpha + IL-2, and IL-1 + IL-2. CD3- DN did not respond to IL-7 or to IL-1 + IL-2, but did respond to TNF-alpha + IL-2. Finally, we detected TNF-alpha production by a cloned line of thymic macrophages, as well as by DN adult thymocytes. These results suggest that cytokines alone are capable of potent growth stimuli for thymocytes, and indicate that different combinations of these molecules act selectively on thymocytes at different developmental stages.  相似文献   

11.
The sequence of activation signals that stimulate proliferation, differentiation, and selection of mature T cell subsets from immature, dull-CD5+/CD4-, CD8- double negative (bCD5), (dCD5/DN) thymocytes are still unclear. However, it is likely that cytokines play integral roles in these events. Here we report that IL-1, in the presence of Con A, supports the proliferation and differentiation of highly purified dCD5/DN precursors into bright-CD5+ DN, CD2- lymphocytes with an apparently mature phenotype. These cells express CD3 and preferentially express the products of two TCR gene families, V beta 8 and V beta 6, whose expression is dependent on the allelic expression of the Mls-1 locus. Experiments, using DN thymocytes mixed with purified dCD5 subset of DN cells from a congenic strain of mice (i.e., expressing two different alleles of CD5) have shown that the cells that are stimulated by IL-1 and comitogen are derived from the immature dCD5 subset and not from the mature bCD5 cells contained within the DN subset. In contrast, IL-2 with the co-mitogen stimulates three- to fourfold higher levels of proliferation, from the same purified immature precursor population, and nearly a twofold increase in cell yield. However, the cells that were generated from precursor thymic cells stimulated with IL-2 represent a completely different T cell subset compared to IL-1-generated cells; these IL-2-stimulated cells express comparable levels of CD3, but also express substantial levels of CD2 and the TCR-gamma/delta, and a subset expresses CD8. These data suggest that these two TCR-alpha/beta and TCR-gamma/delta subsets of mature thymocytes use different cytokines and therefore possibly different stromal interactions to initiate differentiation.  相似文献   

12.
13.
Human thymocytes and thymocyte subsets were examined for their proliferative response to recombinant interleukin-4 (IL-4) and interleukin-3 (IL-3) in serum-free cultures. IL-4 induced marked proliferation of thymocytes after PHA and TPA stimulation, in contrast to the marginal response of T cells from adult peripheral blood. However, depletion of thymocytes bearing the CD3 antigen diminished the IL-4-induced proliferation of thymocytes, indicating that the response of thymocytes to IL-4 is mainly mediated by the CD3-positive cells. Phenotypic changes after culture with IL-4 showed an increase in the percentage of total thymocytes expressing mature T cell antigens (CD3, CD5, and TCR-1) and a decrease in CD1-positive cells. In addition there was an increase in the percentage of CD4+8- cells in both nylon wool-separated thymocytes and CD3-depleted cells with the disappearance of most of the CD4+8+ cells. However, an increase in the percentage of CD4-8- cells was also observed. The IL-4-responding cells do, however, express the mature T cell antigen, CD5, in high density. The effect of IL-3 on the proliferation of human thymocytes was very low and detected only when the thymocytes were cultured in serum-free medium. Depletion of CD3-positive cells did not diminish the IL-3-mediated proliferation of thymocytes, indicating that IL-3-responsive thymocytes are more immature than the subset of thymocytes which responds to IL-4. These results suggest that IL-4 and IL-3 play different roles in the development of human T cells.  相似文献   

14.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

15.
16.
Day-14 fetal CD4-, CD8- thymocytes showed a greater proliferative response to PMA + IL-4 than did adult double-negative thymocytes. In contrast, adult double-negative thymocytes were more responsive to PMA + IL-1 + IL-2 or to IL-1 + IL-2 alone. The adult double-negative thymocytes showed significantly greater proliferation than fetal thymocytes after stimulation via anti-CD3 or anti-Thy-1 in the presence or absence of interleukins (IL-1 + IL-2 or IL-4). Adult CD4-, CD8- thymocytes also exhibited greater calcium mobilization following anti-CD3 stimulation IL-2-dependent activation with anti-Thy-1 or IL-1 + IL-2 in the absence of PMA resulted in marked expansion of CD 3+, F23.1+, CD4-, CD8- thymocytes, a population absent in fetal thymocytes but constituting 4% of pre-cultured CD4-, CD8- adult thymocytes. IL-4 + PMA failed to expand this CD 3+ population. It is hypothesized that before expression of functional TCR, T cell development may be more dependent on activation pathways not using IL-2; after TCR expression, IL-2-dependent pathways, including Thy-1-mediated stimulation, become functional.  相似文献   

17.
Th cell development inside the thymus can be defined on the basis of qualitative and quantitative CD4 and CD8 marker expression and follows the pathway of CD4-8- cells----CD4+8+ cells----CD4+8low cells----CD4+8- cells, which presumably emigrate to seed the periphery and serve as functionally mature Th cells. The various cell subpopulations at defined developmental stages were isolated by electronic cell sorting and examined for mitogen induced IL-2 production and cell proliferation responses. For TCR-alpha beta-bearing CD4+8+ and CD4+8low thymocytes that are actively engaged in positive and negative selection processes, negligible to low levels of IL-2 production and cell proliferation were observed in response to TCR:CD3 triggering or to the combined activation of protein kinase C and calcium mobilization mediated by PMA and ionomycin, respectively. For CD4-8- TCR-alpha beta early thymocytes that have not yet entered the selection process, PMA + ionomycin induced significant cell proliferation but little IL-2 production, in the absence of added IL-1. However, addition of IL-1 caused a powerful induction of IL-2 production that was accompanied by increased cell proliferation. Triggering of the TCR:CD3 complex had no effect on CD4-8-TCR(-)-alpha beta thymocytes as they do not express detectable levels of TCR-alpha beta. For thymus CD4+8- Th cells, the first cells that have completed TCR repertoire selection, vigorous proliferation was observed in response to TCR:CD3 triggering in the presence of added IL-2. However, the development of IL-2 responsiveness was not accompanied by high level IL-2 inducibility as TCR:CD3 triggering caused only marginal IL-2 production. In contrast, spleen CD4+8- T cells, the most "mature" representatives of Th cells, expressed high levels of IL-2 production as well as IL-2 responsiveness in response to TCR:CD3-mediated stimulation. The lack of anti-TCR-induced IL-2 production by thymus CD4+8- T cells was not due to an intrinsic defect as high levels of IL-2 production was induced by PMA + ionomycin. Possible reasons for the temporal acquisition and differential control of IL-2 inducibility and IL-2 responsiveness are discussed in the context of established Th cell development pathway.  相似文献   

18.
Cytokine production by mature and immature thymocytes.   总被引:4,自引:0,他引:4  
We have studied the ability of subpopulations of activated thymocytes to produce four cytokines (IL-2, IL-4, IFN-gamma and TNF-alpha) which are believed to play roles in T cell development. Supernatants from various thymocyte subsets activated with calcium ionophore and PMA were tested for these cytokines. All CD3hi thymocyte subsets (CD4+8-, CD4-8- and CD4-8+) produced high titers of these four cytokines except CD3+4-8+ thymocytes, which did not produce IL-4. In contrast, CD4+8+ thymocytes did not produce any detectable cytokines. CD3-4-8- thymocytes produced IL-2, IFN-gamma, and TNF-alpha (but not IL-4) when activated by calcium ionophore + PMA and IL-1. We then separated CD3-4-8- thymocytes into IL-2R+ and IL-2R-. CD3-4-8-IL-2R+ thymocytes only produced small amounts of IL-2 when activated with calcium ionophore + PMA + IL-1, whereas CD3-4-8-IL-2R- thymocytes did not require IL-1 to produce IL-2, IFN-gamma, and TNF-alpha. Finally, CD4-8+3- thymocytes (an immature population believed to be an intermediate between CD3-4-8- and CD4+8+ thymocytes) only produced marginally detectable levels of IL-2 upon stimulation with calcium ionophore, PMA, and the addition of IL-1 did not result in increased levels of cytokine production. These observations indicate discrete patterns of cytokine production by the subsets studied and suggest specific controls of cytokine gene expression during T cell development.  相似文献   

19.
IL-7 induced the proliferation of normal thymocytes and the effect was synergistically potentiated by a small dose of IL-2, which by itself hardly affected thymocyte proliferation. No synergism was observed between IL-7 and any one of the other lymphokines including IL-1, IL-3, and IL-4. The thymocyte culture stimulated with IL-7 and IL-2 consisted of single positive (CD4+CD8- and CD4-CD8+) and double negative (CD4-CD8-) populations, and double positive (CD4+CD8+) cells were completely deleted. Both single positive and double negative thymocytes expressed CD3, but only the former exhibited V beta 8 and V beta 6 in an expected proportion (approximately 30% in BALB/c mice) and the latter none at all. Immunoprecipitation of the cultured thymocytes by anti-TCR gamma antibody, on the other hand, revealed the presence of a TCR gamma chain. Taken together, these results indicated that the thymocyte cultured with IL-7 and IL-2 consisted of mature T cells bearing alpha beta or gamma delta TCR. Experiments using preselected thymocyte subpopulations indicated that double negative cells responded to both IL-7 and IL-2 with positive synergism when combined, while thymocytes enriched for single positive cells preferentially responded to IL-7 with little response to IL-2 and no detectable synergism. Double positive thymocytes showed no proliferation in response to IL-7 and IL-2. In contrast to single positive thymocytes, splenic T cells hardly responded to IL-7, although significant proliferation was induced in the presence of a low dose of IL-2. Thymocytes cultured with IL-7 and IL-2 showed little nonspecific cytotoxic activity, but responded to Con A or alloantigen, whereas those stimulated with a high dose of IL-2 alone exhibited potent cytotoxic activity. These results indicated that IL-7 was involved in the generation of immunocompetent T cells in the thymus in concert with IL-2.  相似文献   

20.
The purpose of this study was to examine the role of IL-1 on the activation of CD8+/CD4- class I-restricted helper cell-independent cytolytic T cell (HITc) clones known to produce IL-2 and proliferate in vitro after Ag stimulation with a Friend retrovirus-induced leukemia (FBL). The functional role of IL-1 in Ag-specific proliferation and IL-2 secretion was assessed by stimulating the T cell clones with FBL either in the presence or absence of macrophages (M phi), rIL-1, or rIL-2. Resting cloned HITc cells, purified from residual accessory cells, failed to proliferate in response to FBL alone, but proliferated in response to FBL plus M phi, rIL-1 or rIL-2. Stimulation with FBL alone in the absence of M phi or IL-1 was sufficient for induction of IL-2R expression, and rendered cells responsive to IL-2, but M phi or IL-1 were also required to induce production of IL-2. The activity of IL-1 was further examined by measuring the binding of [125I]rIL-1 alpha, which demonstrated that resting cloned HITc cells expressed IL-1R that increased in number after activation with Ag. This expression of IL-1R and requirement for IL-1 by CD8+ HITc was surprising because previous studies examining T cell populations after mitogen stimulation have not detected IL-1R on the CD8+ population. Therefore, the role of IL-1 in the activation of CD8+ CTL that do not secrete IL-2 after activation was assessed. By contrast to HITc, CD8+ CTL required exogenous IL-2 to proliferate in vitro and did not express IL-1R. These data demonstrate that the subset of CD8+ T cells responsible for IL-2 production express IL-1R and that triggering this receptor with IL-1 after Ag stimulation results in the production of IL-2 and subsequent proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号