首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleation time represents the terminal step in in vitro studies examining bile lithogenicity. Because of the concern that residual microcrystals, left after ultracentrifugation, may be responsible for the rapid nucleation time of gallbladder bile from patients with cholesterol gallstones, we have included a final filtration step. However, we found this procedure to considerably lengthen the nucleation time of abnormal biles. In view of the central importance of the nucleation assay we compared the effect of three commonly used gallbladder bile pre-treatment regimes (designed to remove endogenous crystals) on nucleation time. They were: a) immediate filtration of bile (0.22 micron filter); b) ultracentrifugation; and c) ultracentrifugation followed by filtration. The respective nucleation times were: a) 9.3 +/- 3.7 days, n = 6; b) 2.9 +/- 0.4 days, n = 10; c) 12.8 +/- 2.3 days, n = 11. To determine whether the dramatic change in nucleation time was due to the removal of components other than seed crystals, we examined the mucus content, the total lipid composition of bile, and that of its cholesterol transport components following the different pre-treatments. No significant difference in total lipid, percentage cholesterol carried by the transport components, or their cholesterol/phospholipid ratio were found. Ultracentrifugation alone was sufficient to removal all detectable large molecular weight mucus glycoprotein. Although nucleation time of the abnormal gallbladder samples was extended in the ultracentrifuged/filtered biles, it was still significantly different (P less than 0.01) from that of normal gallbladder biles, confirming an intrinsic difference between abnormal and normal biles, in cholesterol metastability. We also examined the effect of protein digestion on the nucleation time of native biles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Aggregation of cholesterol-phospholipid vesicles in supersaturated biles precedes cholesterol crystal formation. In this study we examined the relationship between the percentage of cholesterol carried by vesicles and/or their composition and the propensity to form cholesterol crystals (nucleation time). Bile (common bile duct, gallbladder and T-tube) was obtained from patients with and without gallstones. Gel filtration chromatography resolved three peaks, a void volume vesicle, a smaller vesicle (identified by electron microscopy and of distinct composition compared to the larger void volume vesicle), and the mixed micelle. The void volume vesicle was present in 11 of 28 abnormal gallbladder biles, but in none of the 10 normal gallbladder biles. Despite this difference, no correlation between the nucleation time of whole bile with either the percentage of cholesterol carried by or cholesterol/phospholipid ratio of the void volume vesicle was found. Nucleation time was, however, found to correlate with the composition of the small-vesicular transport form. No significant difference in the composition or percentage of the small-vesicular form or the combined vesicular forms was found between normal and abnormal gallbladder biles, although the latter nucleated significantly more rapidly. Our results confirm the importance of vesicles in the nucleation process but suggest that other factors, not yet identified, appear to be responsible for the more rapid nucleation seen in abnormal gallbladder biles.  相似文献   

3.
This study explores the pathophysiologic effects of soluble biliary glycoproteins in comparison to mucin gel and cholesterol content on microscopic crystal and liquid crystal detection times as well as crystallization sequences in lithogenic human biles incubated at 37 degrees C. Gallbladder biles from 13 cholesterol gallstone patients were ultracentrifuged and microfiltered (samples I). Total biliary lipids were extracted from portions of samples I, and reconstituted with 0.15 m NaCl (pH 7.0) (samples II). Portions of samples II were supplemented with purified concanavalin A-binding biliary glycoproteins (final concentration = 1 mg/mL) (samples III), or mucin gel (samples IV), respectively, isolated from the same cholesterol gallstone biles. Samples V consisted of extracted biliary lipids from uncentrifuged and unfiltered bile samples reconstituted with 0.15 m NaCl (pH 7.0). Analytic lipid compositions of samples I through IV were identical for individual biles but, as anticipated, samples V displayed significantly higher cholesterol saturation indexes. Detection times of cholesterol crystals and liquid crystals were accelerated in the rank order of samples: IV > V > I = II = III, indicating that total soluble biliary glycoproteins in pathophysiologic concentration had no appreciable effect. Crystallization sequences (D. Q-H. Wang and M. C. Carey. J. Lipid Res. 1996. 37: 606-630; and 2539-2549) were similar among samples I through V. Crystal detection times and numbers of solid cholesterol crystals were accelerated in proportion to added mucin gel and the cholesterol saturation of bile only.For pathophysiologically relevant conditions, our results clarify that mucin gel and cholesterol content, but not soluble biliary glycoproteins, promote cholesterol crystallization in human gallbladder bile.  相似文献   

4.
Hepatic cholesterol metabolism in cholesterol gallstone disease   总被引:3,自引:0,他引:3  
Hepatic cholesterol metabolism was examined in 27 Swedish patients with cholesterol gallstone disease and in 13 patients free of gallstones operated for roentgenographically suspect polyps in the gallbladder. All 40 patients underwent cholecystectomy, and a liver biopsy and gallbladder bile were obtained at surgery. The cholesterol saturation of gallbladder bile was significantly higher in patients with gallstones compared to the gallstone-free controls (131 +/- 13 vs. 75 +/- 5%, P less than 0.001). Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, governing cholesterol synthesis, did not differ between gallstone and gallstone-free patients (104 +/- 11 vs. and 109 +/- 22 pmol/min per mg protein, respectively). The activity of cholesterol 7 alpha-hydroxylase, catalyzing the catabolism of cholesterol to bile acids, was not significantly decreased in gallstone patients (6.2 +/- 1.1 vs. 8.0 +/- 2.0 pmol/min per mg protein). The capacity to esterify cholesterol, judged by the activity of acyl coenzyme A:cholesterol acyltransferase (ACAT), was similar in gallstone and gallstone-free patients (5.4 +/- 0.4 vs. 6.7 +/- 1.1 pmol/min per mg protein). In the presence of exogenous cholesterol, ACAT activity increased by more than fourfold in both groups. No correlation was found between the saturation of gallbladder bile and any of the mentioned enzyme activities in gallstone patients. It is concluded that distinct abnormalities in cholesterol metabolizing enzymes are not of major importance for development of gallstones in Swedish patients with cholesterol gallstone disease. The results support the contention that the etiology of cholesterol gallstones is multifactorial.  相似文献   

5.
Cholesterol-phospholipid vesicles in human bile: an ultrastructural study   总被引:2,自引:0,他引:2  
Phospholipid vesicles, a newly described (bile salt independent) mode of cholesterol transport in human bile, were previously characterized by quasi-elastic light scattering and gel filtration. In the present study the ultrastructure of these vesicles was investigated by electron microscopy using freeze-fracture and negative-staining techniques. Vesicles of varying size were found in all 14 hepatic and 3 gallbladder biles examined. The diameter of the vesicles ranged from 25 to 75 nm by electron microscopy after freeze fracture and from 54 to 94 nm by quasi-elastic light scattering. They had a spherical shape and appeared to be unilamellar. The appearance of the vesicles in fresh hepatic and gallbladder biles as well as in chromatographic fractions was similar. Vesicles were dissolved by the addition of exogenous bile salts. Cholesterol is transported in human bile by both vesicles and micelles. The role of the vesicles may be particularly important in preventing cholesterol precipitation in dilute and supersaturated biles.  相似文献   

6.
Biliary micellar cholesterol nucleates via the vesicular pathway   总被引:1,自引:0,他引:1  
Biliary cholesterol nucleates primarily from phospholipid vesicles. In this study, we investigated the mode of nucleation of micellar cholesterol. Ten biles (four human and six model) were examined. The vesicular and micellar fractions of each bile were separated by gel chromatography. The whole biles and their isolated carriers were incubated at 37 degrees C until nucleation time. In whole human biles, the proportion of total cholesterol in vesicles rose throughout the incubation (from zero time to nucleation time) from 15.5 +/- 8.6% to 28.0 +/- 12.5%, and in model biles from 46.8 +/- 22.4% to 75.5 +/- 8.2%. The vesicular isolated fraction remained unchanged throughout incubation. In isolated micelles devoid of vesicles at zero time, new vesicles formed during incubation, carrying increasing proportions of cholesterol. At nucleation time, these vesicles contained 11.0% of originally micellar cholesterol in human biles, and 41.2% in model biles. The new vesicles formed in whole bile and in the micellar fraction were chromatographically and chemically similar to the vesicles originally present in bile. These data suggest that micellar cholesterol nucleates via the neoformation of phospholipid vesicles, which seem to be the final common pathway for cholesterol nucleation in bile.  相似文献   

7.
A nonmicellar, bile salt-independent mode of cholesterol transport in human bile involving phospholipid vesicles was recently reported by our group. In the present study, we have investigated the relative contribution of the phospholipid vesicles and mixed bile salt-phospholipid micelles to cholesterol transport in human hepatic and gallbladder biles. The vesicles (ca 800 A diameter) were demonstrated by quasi-elastic light scattering (QELS) in fresh bile and after chromatography. Gel filtration under conditions that preserved micellar integrity demonstrated that biliary cholesterol was associated with both vesicles and micelles. At low bile salt concentration, the vesicular phase was predominant and most of the cholesterol was transported by it. With increasing bile salt concentrations, a progressive solubilization of the vesicles occurred with a concomitant increase in the amount of cholesterol transported by micelles. The vesicular carrier may be of particular biological significance for cholesterol solubilization in supersaturated biles.  相似文献   

8.
The gallbladder bile of patients with cholesterol gallstones contains pronucleating proteins which accelerate precipitation of cholesterol crystals from bile. In this study we have improved the purification procedure developed earlier for these nucleating proteins and have now identified the nature of these proteins. Gallbladder bile from patients with cholesterol gallstones was applied to concanavalin A affinity columns. The ConA-binding glycoprotein fractions containing the nucleating proteins were then separated by FPLC (fast protein liquid chromatography) using a Superose 12 gel filtration column. Nucleating activity was detected in the high molecular weight (FPLC-1) as well as in the low molecular weight fractions (FPLC-3). Investigation of the high molecular weight fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by electroelution and amino acid sequencing suggested that these proteins were immunoglobulins. Immunostaining of Western blots with specific monoclonal antibodies identified the presence of immunoglobulin (Ig) M and IgA in the FPLC-1 fraction. These immunoglobulins were further purified by affinity chromatography employing an antibody exchanger (ABx) column which specifically binds immunoglobulins. There was no reduction in the cholesterol nucleating activity in the Abx-bound fraction compared to FPLC-1. Additional studies showed that the FPLC-1 fraction was significantly more potent than the ConA glycoproteins from either rapid and slow nucleating biles. Also the number of crystals formed was significantly greater in the FPLC-1 fraction isolated from cholesterol gallstone biles than from the FPLC-1 fraction from control patient biles. Commercially obtained IgM and IgA had no effect on nucleation, but IgM isolated from the serum of patients with Waldenstrom's macroglobulinemia did accelerate the nucleation of cholesterol. We conclude that the IgM and possibly IgA are pronucleating proteins and may be important in the pathogenesis of cholesterol gallstones in man.  相似文献   

9.
The purpose of the present study was (i) to establish a modality for non-invasively probing bile composition in cynomolgus monkeys and (ii) to ascertain the variability in biliary metabolism by repeatedly assessing gallbladder bile in situ. Localised in vivo (1)H magnetic resonance spectroscopy (MRS) provided high-resolution spectra of gallbladder bile that allowed for the first time different species of bile acids, their taurine and glycine conjugates, and phospholipids to be identified and quantified in situ. A combined cross-sectional and longitudinal study of bile composition was conducted over 4 weeks in monkeys kept under standardised nutritional conditions. All biles were composed of the same major constituents. Bile acids contributed 267+/-47 micromol/ml whereof cholate, deoxycholate and chenodeoxycholate were the most abundant primary bile acids. Bile acid conjugation reached an extent of 100%. However, the actual quantitative contributions of different bile constituents varied distinctly. Correlation analysis revealed that intra-individual variability (r=0.77+/-0.03) was significantly (p<0.01) smaller than inter-individual variability (r=0.68+/-0.01), thus purporting the notion that bile composition is a hallmark of individual metabolism. Extension of quantitative bile analysis by in vivo (1)H-MRS to pathological states will provide a rapid and non-invasive modality for monitoring an important, yet elusive compartment of cholesterol and lipid metabolism.  相似文献   

10.
 胆汁经Sephadex G-25分子筛层析和DEAE-纤维素吸附处理,除去其中直接胆红素及胆汁酸盐,然后对其中的β-葡萄糖醛酸苷酶(GUSB)的性质进行了详细研究:该酶的最适温度为56℃;最适pH为4.5;以4mu Gr为底物测得Km为0.68mmol/L;直接胆红素是其竞争性抑制剂,其k_i=2.04×10~(-3)mmol/L;PI_1=6.0—6.2,PI_2=7.2—7.4,MW=280kD。根据竞争性抑制的米氏方程式设计建立了一个在直接胆红素并存的条件下,定量测定胆汁GUSB的计算荧光法,准确性为97.97±1.79%,重复性CV=1.2%,测定时间大大缩短。利用本法在pH4.5和7.0条件下测定了20例胆红素胆结石和17例胆固醇胆结石患者的胆汁GUSB的真实活性。结果指出:不论在pH4.5或7.0条件下,前组活性均显著高于后组(P<0.01)。证明胆汁中高GUSB活性与胆红素胆结石的形成有密切关系。  相似文献   

11.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

12.
The lipid dependence of pyrophosphatase activity was studied by treatment of liver and hepatoma microsomes with phospholipase C from Cl. perfringens and B. cereus and a subsequent incorporation of various classes of phospholipids into the delipidated microsomes. Phospholipase C hydrolysis sharply lowers the pyrophosphatase activity of liver and hepatoma microsomes. The enzyme activity is restored after introduction of phospholipids into delipidated liver microsomes, the maximal effect being achieved on incorporation of phosphatidylcholine. All the phospholipids tested exerted the same reactivation effects on the delipidated microsomes of hepatoma. However, a more complete delipidation of hepatoma microsomes by phospholipase C hydrolysis and a subsequent organic solvent extraction revealed a specific dependence of the enzyme activity on phosphatidylserine.  相似文献   

13.
We compared the protein/lipid structure and Ch-nucleating capacity of individual lipid carriers in two groups of human gallbladder biles: 11 with Fast cholesterol nucleation (2.2 +/- 1.3 days) and 10 with Slow cholesterol nucleation (19.2 +/- 4.4 days). The groups had comparable cholesterol-saturation (1.31 vs. 1.28), total lipids (9.9 vs. 8.5 g/dl) and proteins (8.5 vs. 7.6 mg/ml). Bile was ultracentrifuged (2 h at 150,000 x g) and the resulting isotropic phase was incubated with [3H]Ch and [14C]lecithin and gel-chromatographed on a Superose 6 column with a buffer containing 7.0 mM sodium-taurocholate. Seven protein peaks were identified (280 nm and biochemistry), with the following molecular mass ranges (kDa): 1 (Void volume), 2 (155-205), 3 (50-79), 4 (20-29), 5 (6-15), 6 (3.5-6), 7 (2-3.5). Peaks 2 and 3 were identified as vesicles and micelles, respectively. Fast vs. Slow Ch nucleating biles had: (a) more (P less than 0.02) cholesterol coeluting with vesicles, (b) more (P less than 0.01) lecithin coeluting with low m.w. peaks (Nos. 5-6), (c) less (P less than 0.01) cholesterol and lecithin coeluting with micelles. An inverse correlation (P less than 0.001) was observed between the amount of proteins coeluting with the micellar peak and the cholesterol nucleation of both whole bile and isolated micellar fractions. A marked shift of cholesterol and lecithin from micelles to vesicles was apparent, in the whole bile, after cholesterol nucleation had occurred. Incubation and sequential analysis of isolated and radiolabeled micelles showed a progressive transfer of lecithin and cholesterol molecules to low molecular weight fractions and to vesicles before cholesterol nucleation. We conclude that pro-nucleating biliary vesicles develop from micelles, due to the phasing out and redistribution of micellar cholesterol and lecithin, which are probably induced by biliary proteins.  相似文献   

14.
Measurement of cholesterol gallstone growth in vitro   总被引:2,自引:0,他引:2  
Methods to study growth of gallstones in the laboratory have not been reported. We here present such a method. Human cholesterol gallstones were harvested from patients with multiple nearly identical stones. The gallstones were washed and added to supersaturated model biles and the formation of cholesterol crystals and the increases in mass of human cholesterol gallstones were studied concurrently, over a period of weeks, using nephelometry and a microbalance, respectively. All stones incubated in model biles supersaturated with cholesterol increased in mass. Increases in the degree of supersaturation of cholesterol in the model biles resulted in increased growth of stones. The mass increases, the growth rates, and the spatial orientation of accreted crystalline cholesterol differed among various stone types. The kinetics and structures of stone growth were similar when the stones were incubated in supersaturated, native, human gallbladder biles. The structure of accreted cholesterol was the same as found on the surface of some human gallstones that were harvested during apparent active growth in situ. This simple method allows accurate measurements of stone growth in vitro, in patterns that mimic stone growth in vivo, and is useful for studies on the relationships of gallstone growth and the kinetics of cholesterol crystallization.  相似文献   

15.
The proportion of biliary cholesterol carried by phospholipid vesicles may be an important determinant of the lithogenicity of bile. The distribution of biliary cholesterol between vesicles and other aggregational forms is often determined by gel filtration under standard conditions. The aim of this study was to measure the proportion of biliary cholesterol in vesicles in native unprocessed bile and to compare it with values obtained by chromatography. A modified quasi-elastic light-scattering method was used to measure vesicular cholesterol in whole bile. It was suitable only for lightly pigmented biles with a relatively monodisperse population of vesicles. In ten human biles examined, the proportion of cholesterol in vesicles by gel filtration was 40 +/- 8.1% (mean +/- S.D.) by chemical measurement, and 38 +/- 7.2% by [3H]cholesterol estimation. Quasi-elastic light-scattering measurements of these biles produced vesicular cholesterol values of 36 +/- 9.4%. Chromatography may affect lipid particles in bile. Nevertheless, it provides a relatively accurate measurement of biliary cholesterol in vesicles.  相似文献   

16.
Human bile contains proteins that influence nucleation of cholesterol. Recently, it has been suggested that activity of phospholipases in bile may play a role in this process. To study the influence of phospholipase on nucleation we have determined the effect of phospholipases A2, C and D on the nucleation time of model bile. Phospholipase C decreased the nucleation time, whereas phospholipase A2 inhibited nucleation. The phospholipases were effective only at relatively high concentrations. Phospholipase D was strongly inhibited in model bile and probably only influenced the nucleation time by an aspecific protein effect. The cleavage products of the different phospholipases were determined in native bile samples of 14 cholesterol gallstone patients, 6 patients without stones and 4 patients with pigment stones. In all samples, choline, phosphorylcholine and free fatty acids (FFA) could be detected. However, there was no significant difference between the three groups of patients. The rate of production of choline, phosphorylcholine and FFA was measured in bile incubated at 37 degrees C. Again, there was no significant difference between the three groups of patients. We conclude that phospholipase activity in bile does not play an important role in the pathogenesis of gallstone disease.  相似文献   

17.
Phospholipid peroxidation as a factor in gallstone pathogenesis   总被引:2,自引:0,他引:2  
Phospholipid peroxidation markedly reduces the stability of mixed micellar systems composed of cholate, phosphatidylcholine and supersaturating levels of cholesterol. This suggests that lipid peroxidation is likely to play a significant role in the precipitation of cholesterol from gallbladder bile, thus in the pathogenesis of cholesterol gallstones. This conclusion is supported by studies of the nucleation time of cholesterol in gallbladder biles, which was significantly reduced by exposure to a stream of oxygen. This effect of phospholipid peroxidation on cholesterol solubility may occur in other biological fluids as well. In view of the increased lipid peroxidation in the elderly, it may explain the effect of age on the frequency of various diseases related to cholesterol precipitation.  相似文献   

18.
Cholesterol crystals are the building blocks of cholesterol gallstones. The exact structure of early-forming crystals is still controversial. We combined cryogenic-temperature transmission electron microscopy with cryogenic-temperature electron diffraction to sequentially study crystal development and structure in nucleating model and native gallbladder biles. The growth and long-term stability of classic cholesterol monohydrate (ChM) crystals in native and model biles was determined. In solutions of model bile with low phospholipid-to-cholesterol ratio, electron diffraction provided direct proof of a novel transient polymorph that had an elongated habit and unit cell parameters differing from those of classic triclinic ChM. This crystal is exactly the monoclinic ChM phase described by Solomonov and coworkers (Biophysical J., In press) in cholesterol monolayers compressed on the air-water interface. We observed no evidence of anhydrous cholesterol crystallization in any of the biles studied. In conclusion, classic ChM is the predominant and stable form in native and model biles. However, under certain (low phospholipid) conditions, transient intermediate polymorphs may form. These findings, documenting single-crystal analysis in bulk solution, provide an experimental approach to investigating factors influencing biliary cholesterol crystal nucleation and growth as well as other processes of nucleation and crystallization in liquid systems.  相似文献   

19.
Small angle X-ray scattering (SAXS) with synchroton radiation was used to investigate interactions among lipid particles in lecithin-bile salt model systems and in native gallbladder biles. In model systems in the absence of cholesterol, isotropic, continuous spectra were found, indicating the absence of periodic structures. In the presence of excess cholesterol, interaction in the form of lamellar stacking was detected by the appearance of discrete diffraction peaks. In the supersaturated cholesterol region of the commonly accepted phase diagram [1], where cholesterol crystals were expected, we found lamellar stacking. The high proportion of cholesterol to bile salts seems to be the common denominator of these models. The lamellar stacking was also found in native unprocessed bile. This effect of cholesterol on lipid structure has not been previously described. Lamellar stacking may contribute to cholesterol solubilization. Its influence on the kinetics of cholesterol crystallization is presently unknown.  相似文献   

20.
We determined the distribution of lecithin molecular species between vesicles and mixed micelles in cholesterol super-saturated model biles (molar taurocholate-lecithin-cholesterol ratio 67:23:10, 3 g/dl, 0.15 M NaCl, pH approximately 6-7) that contained equimolar synthetic lecithin mixtures or egg yolk or soybean lecithins. After apparent equilibration (48 h), biles were fractionated by Superose 6 gel filtration chromatography at 20 degrees C, and lecithin molecular species in the vesicle and mixed micellar fractions were quantified as benzoyl diacylglycerides by high performance liquid chromatography. With binary lecithin mixtures, vesicles were enriched with lecithins containing the most saturated sn-1 or sn-2 chains by as much as 2.4-fold whereas mixed micelles were enriched in the more unsaturated lecithins. Vesicles isolated from model biles composed of egg yolk (primarily sn-1 16:0 and 18:0 acyl chains) or soy bean (mixed saturated and unsaturated sn-1 acyl chains) lecithins were selectively enriched (6.5-76%) in lecithins with saturated sn-1 acyl chains whereas mixed micelles were enriched with lecithins composed of either sn-1 18:1, 18:2, and 18:3 unsaturated or sn-2 20:4, 22:4, and 22:6 polyunsaturated chains. Gel filtration, lipid analysis, and quasielastic light scattering revealed that apparent micellar cholesterol solubilities and metastable vesicle cholesterol/lecithin molar ratios were as much as 60% and 100% higher, respectively, in biles composed of unsaturated lecithins. Acyl chain packing constraints imposed by distinctly different particle geometries most likely explain the asymmetric distribution of lecithin molecular species between vesicles and mixed micelles in model bile as well as the variations in apparent micellar cholesterol solubilities and vesicle cholesterol/lecithin molar ratios.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号