首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we microinjected fluorescently labelled liver bovine ACBP (acyl-CoA-binding protein) [FACI-50 (fluorescent acyl-CoA indicator-50)] into HeLa and BMGE (bovine mammary gland epithelial) cell lines to characterize the localization and dynamics of ACBP in living cells. Results showed that ACBP targeted to the ER (endoplasmic reticulum) and Golgi in a ligand-binding-dependent manner. A variant Y28F/K32A-FACI-50, which is unable to bind acyl-CoA, did no longer show association with the ER and became segregated from the Golgi, as analysed by intensity correlation calculations. Depletion of fatty acids from cells by addition of FAFBSA (fatty-acid-free BSA) significantly decreased FACI-50 association with the Golgi, whereas fatty acid overloading increased Golgi association, strongly supporting that ACBP associates with the Golgi in a ligand-dependent manner. FRAP (fluorescence recovery after photobleaching) showed that the fatty-acid-induced targeting of FACI-50 to the Golgi resulted in a 5-fold reduction in FACI-50 mobility. We suggest that ACBP is targeted to the ER and Golgi in a ligand-binding-dependent manner in living cells and propose that ACBP may be involved in vesicular trafficking.  相似文献   

2.
The binding of ribosomal subunits to endoplasmic reticulum membranes   总被引:11,自引:6,他引:5       下载免费PDF全文
The binding of ribosomes and ribosomal subunits to endoplasmic reticulum preparations of mouse liver was studied. (1) Membranes prepared from rough endoplasmic reticulum by preincubation with 0.5m-KCl and puromycin bound 60-80% of added 60S subunits and 10-15% of added 40S subunits. Membranes prepared with pyrophosphate and citrate showed less clear specificity for 60S subunits particularly when assayed at low ionic strengths. (2) Ribosomal 40S subunits bound efficiently to membranes only in the presence of 60S subunits. The reconstituted membrane-60S subunit-40S subunit complex was active in synthesis of peptide bonds. (3) No differences in binding to membranes were seen between subunits derived from free and from membrane-bound ribosomes. (4) It is concluded that the binding of ribosomes to membranes does not require that they be translating a messenger RNA, and that the mechanism whereby bound and free ribosomes synthesize different groups of proteins does not depend on two groups of ribosomes that differ in their ability to bind to endoplasmic reticulum.  相似文献   

3.
A high degree of selectivity toward the target site of the pest organism is a desirable attribute for new safer agrochemicals. To assist in the design of novel herbicides, we determined the crystal structures of the herbicidal target enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD; EC 1.13.11.27) from the plant Arabidopsis thaliana with and without an herbicidal benzoylpyrazole inhibitor that potently inhibits both plant and mammalian HPPDs. We also determined the structure of a mammalian (rat) HPPD in complex with the same nonselective inhibitor. From a screening campaign of over 1000 HPPD inhibitors, six highly plant-selective inhibitors were found. One of these had remarkable (>1600-fold) selectivity toward the plant enzyme and was cocrystallized with Arabidopsis HPPD. Detailed comparisons of the plant and mammalian HPPD-ligand structures suggest a structural basis for the high degree of plant selectivity of certain HPPD inhibitors and point to design strategies to obtain potent and selective inhibitors of plant HPPD as agrochemical leads.  相似文献   

4.
The endoplasmic reticulum membrane complex (EMC) is a versatile complex that plays a key role in membrane protein biogenesis in the ER. Deletion of the complex has wide-ranging consequences including ER stress, disturbance in lipid transport and organelle tethering, among others. Here we report the function and organization of the evolutionarily conserved EMC (TbEMC) in the highly diverged eukaryote, Trypanosoma brucei. Using (co-) immunoprecipitation experiments in combination with mass spectrometry and whole cell proteomic analyses of parasites after depletion of select TbEMC subunits, we demonstrate that the TbEMC is composed of 9 subunits that are present in a high molecular mass complex localizing to the mitochondrial-endoplasmic reticulum interface. Knocking out or knocking down of single TbEMC subunits led to growth defects of T. brucei procyclic forms in culture. Interestingly, we found that depletion of individual TbEMC subunits lead to disruption of de novo synthesis of phosphatidylcholine (PC) or phosphatidylethanolamine (PE), the two most abundant phospholipid classes in T. brucei. Downregulation of TbEMC1 or TbEMC3 inhibited formation of PC while depletion of TbEMC8 inhibited PE synthesis, pointing to a role of the TbEMC in phospholipid synthesis. In addition, we found that in TbEMC7 knock-out parasites, TbEMC3 is released from the complex, implying that TbEMC7 is essential for the formation or the maintenance of the TbEMC.  相似文献   

5.
Pecot MY  Malhotra V 《Cell》2004,116(1):99-107
What happens to organelles during mitosis, and how they are apportioned to each of the daughter cells, is not completely clear. We have devised a procedure to address whether Golgi membranes fuse with the Endoplasmic Reticulum (ER) during mitosis via the detection of interactions between ER and Golgi proteins. This procedure involves coexpressing an FKBP-tagged Golgi enzyme with an ER-retained protein fused to FRAP in COS cells. Since treatment with rapamycin induces a tight association between FKBP and FRAP, one would expect rapamycin to trap the FKBP-fused Golgi protein in the ER if it ever visits the ER during mitosis. However, after the doubly transfected cells progress through mitosis in the presence of rapamycin, we find the Golgi protein in the newly formed Golgi stacks and not in the ER. Based on these results, we conclude that Golgi membranes remain separate from the ER during mitosis in mammalian cells.  相似文献   

6.
Bcl-2, an anti-apoptotic protein, is believed to be localized in the outer mitochondrial membrane, endoplasmic reticulum, and nuclear envelope. However, Bcl-2 has also been suggested as playing a role in the maintenance of mitochondrial membrane potential, indicating its possible association with the inner mitochondrial membrane. We therefore further examined the exact localization of Bcl-2 in mitochondria purified from wild-type and bcl-2-transfected PC12 cells and pre- and postnatal rat brains. Double immunostaining demonstrated that Bcl-2 was co-localized with subunit beta of F1F0ATPase in the inner mitochondrial membrane. Biochemical analysis of isolated mitochondria using digitonin and trypsin suggests an association of Bcl-2 with the inner mitochondrial membrane. More interestingly, the majority of Bcl-2 disappeared from the inner membrane of mitochondria when cultured under serum deprivation. These results suggest that Bcl-2 acts as an anti-apoptotic regulator by localizing mainly to the inner mitochondrial and smooth ER membranes.  相似文献   

7.
We recently identified an endoplasmic reticulum (ER) retrieval signal-the dilysine motif-in the glycoproteins of all five foamy viruses (FVs) for which sequences were available (P. A. Goepfert, G. Wang, and M. J. Mulligan, Cell 82:543-544, 1995). In the present study, expression of recombinant human FV (HFV) glycoprotein and analyses of oligosaccharide modifications and precursor cleavage indicated that the protein was localized to the ER. HFV glycoproteins encoding seven different dilysine motif mutations were then expressed. The results indicated that disruptions of the dilysine motif resulted in higher levels of forward transport of the HFV glycoprotein from the ER through the Golgi apparatus to the plasma membrane. We conclude that the dilysine motif is responsible for ER sorting of the FV glycoprotein. Signal-mediated ER localization has not previously been described for a retroviral glycoprotein.  相似文献   

8.
Mx proteins are induced by type I interferon and inhibit a broad range of viruses by undefined mechanisms. They are included within the dynamin family of large GTPases, which are involved in vesicle trafficking and share common biophysical features. These properties include the propensity to self-assemble, an affinity for lipids, and the ability to tubulate membranes. In this report we establish that human MxA, despite sharing only 30% homology with conventional dynamin, possesses many of these properties. We demonstrate for the first time that MxA self-assembles into rings that tubulate lipids in vitro, and associates with a specific membrane compartment in cells, the smooth endoplasmic reticulum.  相似文献   

9.
10.
11.
The endoplasmic reticulum (ER) has unique properties that are exploited by microbial pathogens. Exotoxins secreted by bacteria take advantage of the host transport pathways that deliver proteins from the Golgi to the ER. Transport to the ER is necessary for the unfolding and translocation of these toxins into the cytosol where their host targets reside. Intracellular pathogens subvert host vesicle transport to create ER-like vacuoles that support their intracellular replication. Investigations on how bacterial pathogens can use the ER during host infection are providing important details on transport pathways involving this specialized organelle.  相似文献   

12.
R A Pascal  M A Oliver  Y C Chen 《Biochemistry》1985,24(13):3158-3165
A variety of analogues of (4-hydroxyphenyl)pyruvic acid were synthesized, and the reactions of these compounds with the 4-hydroxyphenylpyruvate dioxygenase from Pseudomonas sp. P.J. 874 were examined. Several of the ring-substituted substrate analogues are reversible inhibitors of the enzyme, the most potent being the competitive inhibitor (2,6-difluoro-4-hydroxyphenyl) pyruvate (Ki = 1.3 microM). Two substrate analogues (2-fluoro-4-hydroxyphenyl)pyruvate and [(4-hydroxyphenyl)thio]pyruvate proved to be alternate substrates for the enzyme. The former compound is converted to (3-fluoro-2,5-dihydroxyphenyl)acetate in an essentially normal catalytic sequence including oxidative decarboxylation, ring hydroxylation, and side-chain migration. The latter compound, however, undergoes oxidative decarboxylation and sulfoxidation to give [(4-hydroxyphenyl)sulfinyl]acetate; ring oxidation is not observed. The implications of these results with regard to the catalytic mechanism of 4-hydroxyphenylpyruvate dioxygenase are discussed.  相似文献   

13.
The budding yeast Saccharomyces cerevisiae has four inositol polyphosphate 5-phosphatase (5-phosphatase) genes, INP51, INP52, INP53, and INP54, all of which hydrolyze phosphatidylinositol (4,5)-bisphosphate. INP54 encodes a protein of 44 kDa which consists of a 5-phosphatase domain and a C-terminal leucine-rich tail, but lacks the N-terminal SacI domain and proline-rich region found in the other three yeast 5-phosphatases. We report that Inp54p belongs to the family of tail-anchored proteins and is localized to the endoplasmic reticulum via a C-terminal hydrophobic tail. The hydrophobic tail comprises the last 13 amino acids of the protein and is sufficient to target green fluorescent protein to the endoplasmic reticulum. Protease protection assays demonstrated that the N terminus of Inp54p is oriented toward the cytoplasm of the cell, with the C terminus of the protein also exposed to the cytosol. Null mutation of INP54 resulted in a 2-fold increase in secretion of a reporter protein, compared with wild-type yeast or cells deleted for any of the SacI domain-containing 5-phosphatases. We propose that Inp54p plays a role in regulating secretion, possibly by modulating the levels of phosphatidylinositol (4,5)-bisphosphate on the cytoplasmic surface of the endoplasmic reticulum membrane.  相似文献   

14.
The translocation mode of preprolactin (pPL) across mammalian endoplasmic reticulum was reinvestigated in light of recent findings that nascent secretory polypeptides synthesized in the presence of a highly reducing environment could be translocated posttranslationally and independently of their attachment to the ribosome (Maher, P. A., and S. J. Singer, 1986, Proc. Natl. Acad. Sci. USA, 83:9001-9005). The effects of the reducing agent dithiothreitol (DTT) on pPL synthesis and translocation were studied in this respect. The translocation of pPL was shown to take place only cotranslationally. The apparent posttranslational translocation was due to ongoing chain synthesis irrespective of the presence of high concentrations of DTT. When synthesis was completely blocked, no translocation was observed in the presence or absence of DTT. The synthesis of pPL was retarded by DTT, while its percent translocation was enhanced. The retardation in synthesis was reflected in reduced rates of initiation and elongation. As a consequence of this retardation, which increases the ratio of microsomes to nascent chains, and of possible effects on the conformation of nascent pPL and components of the translocation apparatus, DTT may expand the time and chain length windows for nascent chain translocation competence.  相似文献   

15.
PRL-1 is one of three closely related protein-tyrosine phosphatases, which are characterized by C-terminal farnesylation. Recent reports suggest that they are involved in the regulation of cell proliferation and transformation. However, their biological function has not yet been determined. Here we show that PRL-1 mRNA is overexpressed in a number of human tumor cell lines, including HeLa cells. Using immunofluorescence we studied the subcellular localization of endogenous PRL-1, and our results demonstrate that PRL-1 exhibits cell cycle-dependent localization; in non-mitotic HeLa cells, PRL-1 is localized to the endoplasmic reticulum in a farnesylation-dependent manner. In mitotic cells PRL-1 relocalizes to the centrosomes and the spindle apparatus, proximal to the centrosomes, in a farnesylation-independent manner. Conditional expression of a catalytic domain mutant in HeLa cells results in a delay in the progression of cells through mitosis but has no effect on other phases of the cell cycle. Further, expression of a farnesylation site PRL-1 mutant results in mitotic defects, characterized by chromosomal bridges in anaphase and lagging chromosomes, without affecting spindle checkpoint function. Together, these results suggest that PRL-1 function is regulated in a cell cycle-dependent manner and implicate PRL-1 in regulating progression through mitosis, possibly by modulating spindle dynamics.  相似文献   

16.
17.
18.
Summary An electron microscope study of developing mouse oocytes has revealed a close morphological relationship between mitochondria and endoplasmic reticulum. In many instances, it was noted that the outer mitochondrial membrane was continuous with the reticular membranes. These cytoplasmic membranes are smooth or studded with ribosomes. These continuities establish an open channel between the endoplasmic reticulum and mitochondria. Similar connections are also found in isolated preparations of mitochondria from the adult guinea pig ovary. The functional significance of these observations are discussed in relation to biochemical studies which demonstrate a transfer of protein from endoplasmic reticulum to mitochondria.  相似文献   

19.
All coronaviruses possess small open reading frames (ORFs) between structural genes that have been hypothesized to play important roles in pathogenesis. Infectious bronchitis virus (IBV) ORF 3a is one such gene. It is highly conserved among group 3 coronaviruses, suggesting that it has an important function in infection. IBV 3a protein is expressed in infected cells but is not detected in virions. Sequence analysis predicted that IBV 3a was a membrane protein; however, only a fraction behaved like an integral membrane protein. Microscopy and immunoprecipitation studies demonstrated that IBV 3a localized to the cytoplasm in a diffuse pattern as well as in sharp puncta in both infected and transfected cells. These puncta did not overlap cellular organelles or other punctate structures. Confocal microscopy demonstrated that IBV 3a puncta lined up along smooth endoplasmic reticulum (ER) tubules and, in a significant number of instances, were partially surrounded by these tubules. Our results suggest that IBV 3a is partially targeted to a novel domain of the smooth ER.  相似文献   

20.
Summary The interactions of various preparations of endoplasmic reticulum membranes and polysomes have been studied by means of a sandwich sucrose gradient that clearly isolates free ribosomes, smooth endoplasmic reticulum (S.E.R.) and rough endoplasmic reticulum (R.E.R.) from the microsomal fraction of rat liver homogenates. Reconstructed rough membranes separate well from the native R.E.R. but occupy the same position along the gradients as the S.E.R. and the rough membranes, stripped of their ribosomes by means of LiCl. Native R.E.R. and S.E.R. do not bind any added labeled polysomes at 0°C; previous treatment with LiCl does not modify the behavior of S.E>R. The presence of cell sap during the binding reaction does not increase polysome fixation by stripped-rough membranes but protects in some way the polysomes and preserves all their original functional capacity of amino acid incorporation into protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号