首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Uv- and Gamma-Radiation Sensitive Mutants of Arabidopsis Thaliana   总被引:3,自引:0,他引:3       下载免费PDF全文
C. Z. Jiang  C. N. Yen  K. Cronin  D. Mitchell    A. B. Britt 《Genetics》1997,147(3):1401-1409
Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ``dark repair' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi.  相似文献   

2.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

3.
BACKGROUND: The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relative contribution of CPDs and 6-4PPs to these biological consequences of UV exposure is hardly known. Because placental mammals have undergone an evolutionary loss of photolyases, repair enzymes that directly split CPDs and 6-4PPs into the respective monomers in a light-dependent and lesion-specific manner, they can only repair UV-induced DNA damage by the elaborate nucleotide excision repair pathway. RESULTS: To assess the relative contribution of CPDs and 6-4PPs to the detrimental effects of UV light, we generated transgenic mice that ubiquitously express CPD-photolyase, 6-4PP-photolyase, or both, thereby allowing rapid light-dependent repair of CPDs and/or 6-4PPs in the skin. We show that the vast majority of (semi)acute responses in the UV-exposed skin (i.e., sunburn, apoptosis, hyperplasia, and mutation induction) can be ascribed to CPDs. Moreover, CPD-photolyase mice, in contrast to 6-4PP-photolyase mice, exhibit superior resistance to sunlight-induced tumorigenesis. CONCLUSIONS: Our data unequivocally identify CPDs as the principal cause of nonmelanoma skin cancer and provide genetic evidence that CPD-photolyase enzymes can be employed as effective tools to combat skin cancer.  相似文献   

4.
Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase.  相似文献   

5.
6.
DNA damage can cause cell death unless it is either repaired or tolerated. The precise contributions of repair and tolerance mechanisms to cell survival have not been previously evaluated. Here we have analyzed the cell killing effect of the two major UV light-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), in nucleotide excision repair-deficient human cells by expressing photolyase(s) for light-dependent photorepair of either or both lesions. Immediate repair of the less abundant 6-4PPs enhances the survival rate to a similar extent as the immediate repair of CPDs, indicating that a single 6-4PP lesion is severalfold more toxic than a CPD in the cells. Because UV light-induced DNA damage is not repaired at all in nucleotide excision repair-deficient cells, proliferation of these cells after UV light irradiation must be achieved by tolerance of the damage at replication. We found that RNA interference designed to suppress polymerase zeta activity made the cells more sensitive to UV light. This increase in sensitivity was prevented by photorepair of 6-4PPs but not by photorepair of CPDs, indicating that polymerase zeta is involved in the tolerance of 6-4PPs in human cells.  相似文献   

7.
To examine the light-dependent repair of DNA photo-lesions,such as, cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyriinidonephotoproducts [(6-4)pho-toproducts], we incubated cucumber cotyledonsunder monochromatic light (325-500 nm) after they had been exposedto UV-B irradiation. Irradiation at wavelengths between 375and 425 nm was the most efficient for photo-repair of CPDs.The dependence on wavelength for the removal of (6-4)photoproductsdiffered from that for the photorepair of CPDs. The (6-4)photoproductswere most efficiently removed upon irradiation at 325 nm witha second peak at 400 to 425 nm. An immunological assay usingantibodies specific to Dewar photoproducts revealed that irradiationat 325 nm induced the photoisomerization of (6-4)photoproductsto Dewar photoproducts. Thus, the most efficient wavelengthfor the photorepair of (6-4)photoprod-ucts was between 400 and425 nm. It seems likely that processes similar to those involvedin photorepair of CPDs might be involved in the photorepairof (6-4)photoprod-ucts. (Received October 15, 1997; Accepted April 22, 1998)  相似文献   

8.
The most prevalent DNA lesions induced by UVB are the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). It has been a long standing controversy as to which of these photoproduct is responsible for mutations in mammalian cells. Here we have introduced photoproduct-specific DNA photolyases into a mouse cell line carrying the transgenic mutation reporter genes lacI and cII. Exposure of the photolyase-expressing cell lines to photoreactivating light resulted in almost complete repair of either CPDs or (6-4)PPs within less than 3 h. The mutations produced by the remaining, nonrepaired photoproducts were scored. The mutant frequency in the cII gene after photoreactivation by CPD photolyase was reduced from 127 x 10(-5) to 34 x 10(-5) (background, 8-10 x 10(-5)). Photoreactivation with (6-4) photolyase did not lower the mutant frequency appreciably. In the lacI gene the mutant frequency after photoreactivation repair of CPDs was reduced from 148 x 10(-5) to 28 x 10(-5) (background, 6-10 x 10(-5)). Mutation spectra obtained with and without photoreactivation by CPD photolyase indicated that the remaining mutations were derived from background mutations, unrepaired CPDs, and other DNA photopoducts including perhaps a small contribution from (6-4)PPs. We conclude that CPDs are responsible for at least 80% of the UVB-induced mutations in this mammalian cell model.  相似文献   

9.
A Southern-blot-based, site-specific assay for ultraviolet (UV)-induced cyclobutyl pyrimidine dimers (CPDs), employing the CPD-specific enzyme T4 endonuclease V, was used to follow the repair of this lesion in particular DNA sequences in 5- to 6-d-old Arabidopsis thaliana seedlings. CPDs, measured as enzyme-sensitive sites, in nuclear sequences were removed rapidly in the light but were repaired slowly, if at all, in the dark. This result was identical to that obtained in prior analyses of CPDs in total cellular DNA. Assay of representative chloroplast and mitochondrial sequences in the same DNA preparations revealed that, in contrast to nuclear sequences, enzyme-sensitive sites are inefficiently eliminated in both the presence and absence of visible light. These observations suggest that Arabidopsis seedlings possess little or no capacity for the repair of CPDs in the organellar genomes. Given the fact that the UV dose employed only marginally affected the growth of the seedlings, we suggest that Arabidopsis seedlings must possess very efficient mechanism(s) for the tolerance of UV-induced DNA damage.  相似文献   

10.
11.
During evolution, placental mammals appear to have lost cyclobutane pyrimidine dimer (CPD) photolyase, an enzyme that efficiently removes UV-induced CPDs from DNA in a light-dependent manner. As a consequence, they have to rely solely on the more complex, and for this lesion less efficient, nucleotide excision repair pathway. To assess the contribution of poor repair of CPDs to various biological effects of UV, we generated mice expressing a marsupial CPD photolyase transgene. Expression from the ubiquitous beta-actin promoter allowed rapid repair of CPDs in epidermis and dermis. UV-exposed cultured dermal fibroblasts from these mice displayed superior survival when treated with photoreactivating light. Moreover, photoreactivation of CPDs in intact skin dramatically reduced acute UV effects like erythema (sunburn), hyperplasia and apoptosis. Mice expressing the photolyase from keratin 14 promoter photo reactivate CPDs in basal and early differentiating keratinocytes only. Strikingly, in these animals, the anti-apoptotic effect appears to extend to other skin compartments, suggesting the presence of intercellular apoptotic signals. Thus, providing mice with CPD photolyase significantly improves repair and uncovers the biological effects of CPD lesions.  相似文献   

12.
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.  相似文献   

13.
Ultraviolet radiation induces the formation of two classes of photoproducts in DNA-the cyclobutane pyrimidine dimer (CPD) and the pyrimidine [6-4] pyrimidone photoproduct (6-4 product). Many organisms produce enzymes, termed photolyases, which specifically bind to these lesions and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. Two classes of photolyases (class I and class II) repair CPDs. A gene that encodes a protein with class II CPD photolyase activity in vitro has been cloned from several plants including Arabidopsis thaliana, Cucumis sativus and Chlamydomonas reinhardtii. We report here the isolation of a homolog of this gene from rice (Oryza sativa), which was cloned on the basis of sequence similarity and PCR-based dilution-amplification. The cDNA comprises a very GC-rich (75%) 5; region, while the 3; portion has a GC content of 50%. This gene encodes a protein with CPD photolyase activity when expressed in E. coli. The CPD photolyase gene encodes at least two types of mRNA, formed by alternative splicing of exon 5. One of the mRNAs encodes an ORF for 506 amino acid residues, while the other is predicted to code for 364 amino acid residues. The two RNAs occur in about equal amounts in O. sativa cells.  相似文献   

14.
Summary Fibroblasts from Xenopus laevis, which possess photoreactivating enzyme were used to study the influence of photoreactivating light on the frequency of pyrimidine dimers in DNA, chromosomal aberrations, sister chromatid exchanges, cell killing and the induction of gene mutations (ouabain-resistance) induced by 254 nm ultraviolet irradiation. The frequency of all biological endpoints studied were reduced following exposure to photoreactivating light parallel to the reduction in the frequencies of pyrimidine dimers (determined as endonuclease sensitive sites). However there was not always an absolute quantitative relationship between the reduction in the frequency of pyrimidine dimers and the reduction in the biological effects. This probably reflects a fast fixation process for the biological effects prior to removal of the dimers by photoreactivation.Abbreviations UV ultraviolet - PR photoreactivating - ESS endonuclease sensitive site - SCE sister chromatid exchanges - BrdUrd 5-brothodeoxyuridine  相似文献   

15.
16.
Snopov SA  Roza L  de Gruijl FR 《Tsitologiia》2006,48(11):958-966
Using immuno-labelling of cyclobutane pyrimidine dimers (CPDs) in nuclei of peripheral lymphocytes after their UVC-irradiation and cultivation, we have found that within the first four hours of cultivation the CPD-specific fluorescent signal from cell nuclei increased. Earlier, a similar increase in binding of antibody specific for pyrimidine (6-4) pyrimidone photoproducts to undenatured DNA isolated from UV-irradiated Chinese hamster ovary cells was reported (Mitchell et al., 1986). Our experiments showed that nucleotide excision repair enzyme might induce such of DNA modification in lymphocyte nuclei that increased specific antibody binding to DNA fragments with lesions. We suggest that enzymatic formation of open structures in DNA predominated qualitatively over dual-incision and excision of these fragments, and resulted in the enhanced exposure of the pyrimidine dimers in nuclei to specific antibodies. The results evidence that nucleotid excision repair in unstimualted human lymphocytes being deficient in dual incision and removal of UV-induced DNA lesions appear to be capable of performing chromatin relaxation and pre-incision uncoiling of DNA fragments with lesions.  相似文献   

17.
The induction and photorepair of pyrimidine dimers in DNA have been measured in the ultraviolet-irradiated, corneal epithelium of the marsupial, Monodelphis domestica, using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that FS-40 sunlamps (280-400 nm) induced 7.2 +/- 1.0 X 10(-5) pyrimidine dimers per kilobase (kb) of DNA per J/m2. Following 100 J/m2, 50% and greater than 90% of the dimers were photorepaired during a 10- and 30-min exposure to photoreactivating light (320-400 nm), respectively. In addition, approximately 70% and approximately 60% of the dimers induced by 300 and 500 J/m2, respectively, were repaired by a 60-min exposure to photoreactivating light. The capacity of the corneal epithelium of M. domestica to photorepair pyrimidine dimers identifies this animal as a potentially useful model with which to determine whether pyrimidine dimers are involved in pathological changes of the irradiated eye.  相似文献   

18.
19.
DNA photolyases that catalyze light-dependent repair of cyclobutane pyrimidine dimers (CPDs) were extracted and partially purified from sorghum and cucumber. The action spectra of CPD photolyases in these plant species had a maximum at 400 nm, which differ from those in Drosophila, Escherichia coli and Anacystis.  相似文献   

20.
Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely, cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6 kJ m−2 d−1 significantly reduced fungal growth rates (by between 22% and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and NER, showed that the UV-B-induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr respectively), demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. We present the first study to examine the capability of the Arctic and Antarctic Pseudogymnoascus sp. to perform photoreactivation and/or NER via RT-qPCR approaches, and also clarify the effects of light on UV-B-induced DNA damage repair in vivo by quantifying cyclobutene pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts. Physiological response data, including relative growth rate, pigmentation and conidia production in these Pseudogymnoascus isolates exposed to UV-B radiation are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号