首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Oral Streptococcus species experience carbohydrate limitation interrupted by periods of substrate excess following food intake by the host. To investigate the competitiveness of various streptococcal species under fluctuating carbohydrate supply, 2-membered chemostat cultures were run.
Under continuous limitation of glucose or sucrose, all 6 Streptococcus mutans test strains were outcompeted by Streptococcus sanguis P4A7 or Streptococcus milleri B448. This indicated that S. mutans had a lower affinity for glucose and sucrose than S. sanguis and S. milleri .
Mixed cultures were then subjected to hourly pulses with glucose. Under these conditions S. mutans Ny344 competed successfully with S. milleri B448, but still lost the competition against S. sanguis P4A7. The streptococci responded to pulses by taking up glucose at the maximum rate almost instantaneously. S. sanguis P4A7 had the highest rate of glucose uptake while the q max value of S. mutans Ny344 was higher than that of S. milleri B448. This suggested a causal relationship between q max and competitiveness.  相似文献   

2.
Streptococcus mutans 6715-15 and Streptococcus sanguis 10558 were grown together in continuous culture with glucose as the limiting carbon source. The relationship of growth rate to substrate concentration was determined for pure cultures of each organism in continuous and batch cultures. A model based on competition for a growth-limiting substrate (glucose) was used to predict the proportions of each organism when grown in binary cultures. The results indicate that interactions other than competition for glucose carbon exist between S. mutans and S. sanguis grown under these conditions.  相似文献   

3.
The growth response of Streptococcus sanguis groups 1:A and 1:B in a complete chemically defined medium was not influenced by the oxygen concentration of the growth atmosphere. All of the cultures required cysteine and arginine; tyrosine and branched-chain amino acids were frequently required. Proteolysis of casein, mucin, and the anionic proteins of germfree rat saliva by S. sanguis was demonstrated. Hydrolytic activity toward casein was found in the soluble contents of the cells and in the cellular debris after disruption of the cells, with the soluble fractions exhibiting greater proteolytic activity toward casein. The soluble fractions from S. sanguis did not hydrolyze mucin, but this substrate was hydrolyzed by the cell debris fraction. When the amino acid requirements and proteolytic activity of S. sanguis and S. mutans were compared, these two oral streptococcal species exhibited distinct and characteristic differences.  相似文献   

4.
Streptococcus mutans 6715-15 and Streptococcus sanguis 10558 were grown together in continuous culture with glucose as the limiting carbon source. The relationship of growth rate to substrate concentration was determined for pure cultures of each organism in continuous and batch cultures. A model based on competition for a growth-limiting substrate (glucose) was used to predict the proportions of each organism when grown in binary cultures. The results indicate that interactions other than competition for glucose carbon exist between S. mutans and S. sanguis grown under these conditions.  相似文献   

5.
A carbon dioxide requirement for growth of Streptococcus sanguis was readily demonstrated in a fermentor where the gas atmosphere could be controlled. Growth at a maximum rate occurred immediately in response to the appropriate CO(2) concentration; growth stopped when CO(2) was deleted. Washed inocula consisting of exponentially growing cells required a minimum of 2.4% CO(2), postexponential phase cells needed 1.2 to 1.8% CO(2) immediately and 2.4% CO(2) shortly thereafter, whereas stationary phase cells required three sequential increases in CO(2) from 0.3 to 1.8 to 2.4% within the first 90 min of growth. These CO(2) concentrations permitted each inoculum to initiate growth immediately at the same maximum rate. These results also showed that physiologically "old" cells had the same capacity for growth as "young" cells when the CO(2) concentrations were appropriate for the type of inoculum. Continued exponential growth of the culture at the same optimum rate required 2.4% CO(2). Lower concentrations of CO(2) were rate limiting and the resulting exponential rate was proportional to the CO(2) concentration. The "normal" lag period of S. sanguis appears to be an artifact induced by a CO(2) deficiency.  相似文献   

6.
Oral streptococci utilize an F-ATPase to regulate cytoplasmic pH. Previous studies have shown that this enzyme is a principal determinant of aciduricity in the oral streptococcal species Streptococcus sanguis and Streptococcus mutans. Differences in the pH optima of the respective ATPases appears to be the main reason that S. mutans is more tolerant of low pH values than S. sanguis and hence pathogenic. We have recently reported the genetic arrangement for the S. mutans operon. For purposes of comparative structural biology we have also investigated the F-ATPase from S. sanguis. Here, we report the genetic characterization and expression in Escherichia coli of the S. sanguis ATPase operon. Sequence analysis showed a gene order of atpEBFHAGDC and that a large intergenic space existed upstream of the structural genes. Activity data demonstrate that ATPase activity is induced under acidic conditions in both S. sanguis and S. mutans; however, it is not induced to the same extent in the nonpathogenic S. sanguis. Expression studies with an atpD deletion strain of E. coli showed that S. sanguis-E. coli hybrid enzymes were able to degrade ATP but were not sufficiently functional to permit growth on succinate minimal media. Hybrid enzymes were found to be relatively insensitive to inhibition by dicyclohexylcarbodiimide, indicating loss of productive coupling between the membrane and catalytic subunits.  相似文献   

7.
Bacteriocinogenic strains of Streptococcus salivarius antagonized Strep. sanguis on blood agar and in Todd-Hewitt broth with, but not without, sucrose. Each organism produced plaque in vitro but, after a mixed inoculum with both organisms, the numbers of Strep. sanguis rapidly fell to <0.01% plaque organisms. A non-bacterio-cinogenic mutant of Strep. salivarius was itself inhibited by Strep. sanguis in the plaque-producing system; derivatives of Strep. sanguis partially resistant to bacteriocin in the plate test nevertheless failed to co-habit plaque with bacteriocinogenic Strep. salivarius. The latter could suppress Strep. sanguis in established monoculture plaque but only if sucrose were continuously supplied. It was concluded that the effect of bacteriocin in plaque formation by these streptococci is linked to other as yet unknown properties which may account for the absence of Strep. salivarius from plaque in vivo .  相似文献   

8.
We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.  相似文献   

9.
The occurrence of highly variable penicillin-binding proteins (PBPs) in penicillin-resistant Streptococcus pneumoniae suggested that transfer of homologous genes from related species may be involved in resistance development. Antiserum and monoclonal antibodies raised against PBPs 1a and 2b from the susceptible S. pneumoniae R6 strain were used to identify related PBPs in 41 S. mitis, S. sanguis I and S. sanguis II strains mostly isolated in South Africa with MIC values ranging from less than 0.15 to 16 mg/ml. Furthermore, the possibility of genetic exchange was examined with 30 penicillin-resistant strains of this collection (MIC greater than 0.06 mg/ml) as donors using S. pneumoniae R6 as recipient in transformation experiments. The majority of S. mitis and S. sanguis II strains but none of the S. sanguis I strains could transform penicillin resistance genes into S. pneumoniae R6. All positive donor strains and all susceptible isolates of S. mitis and S. sanguis II strains contained PBPs which cross-reacted with the anti-PBP 1a and/or anti-PBP 2b antibodies. On the other hand, only five of the 14 S. sanguis I strains contained a PBP that reacted with one of the antibodies. This strongly suggested the presence of genes homologous to the pneumococcal PBP 1a and 2b genes in viridans streptococci, and documents that penicillin resistance determinants can be transformed from viridans streptococci into the pneumococcus.  相似文献   

10.
Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation.  相似文献   

11.
Plasmid deoxyribonucleic acid (DNA) from Streptococcus faecalis, strain DS5, was transferred to the Challis strain of Streptococcus sanguis by transformation. Two antibiotic resistance markers carried by the beta plasmid from strain DS5, erythromycin and lincomycin, were transferred to S. sanguis at a maximum frequency of 1.8 x 10-5/colony-forming unit. Approximately 70% of the covalently closed circular DNA isolated from transformant cultures by dye buoyant density gradients was shown to be hybridizable to beta plasmid DNA. Two major differences were observed between the beta plasmid from S. faecalis and the plasmid isolated from transformed S. sanguis: (i) the beta plasmid from strain DS5 sedimented in velocity gradients at 43S, whereas the covalently closed circular DNA from transformed Challis sedimented at 41S, suggesting a 1.5-Mdal deletion from the beta plasmid occurred; (ii) although the 43S beta plasmid remained in the supercoiled configuration for several weeks after isolation, the 41S plasmid was rapidly converted to a linear double-stranded molecule. Attempts to transform S. sanguis with the alpha plasmid from S. faecalis, strain DS5, were unsuccessful.  相似文献   

12.
Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation.  相似文献   

13.
The adhesion to fibrin-platelet clots in vitro of 21 strains of streptococci isolated from the blood of patients with sub-acute bacterial endocarditis (SABE) was measured. The species, in order of greatest adhesion, were Streptococcus faecalis, Streptococcus mutans, Streptococcus milleri, Streptococcus sanguis , dextran-positive Streptococcus mitior , dextran-negative Streptococcus mitior and Streptococcus salivarius. Individual strains within species, however, cannot be assumed to be representative of their species and may exhibit unusually high or low adhesion. Adhesion depended upon both bacterial concentration and period of contact. There was no simple relationship between ability to adhere and liability to cause endocarditis. Formation of dextran did not increase adhesion. The streptococci were more adhesive than strains of Escherichia coli and Neisseria sicca and less adhesive than strains of Staphylococcus aureus and Streptococcus pyogenes.  相似文献   

14.
The adhesion to fibrin-platelet clots in vitro of 21 strains of streptococci isolated from the blood of patients with sub-acute bacterial endocarditis (SABE) was measured. The species, in order of greatest adhesion, were Streptococcus faecalis, Streptococcus mutans, Streptococcus milleri, Streptococcus sanguis, dextran-positive Streptococcus mitior, dextran-negative Streptococcus mitior and Streptococcus salivarius. Individual strains within species, however, cannot be assumed to be representative of their species and may exhibit unusually high or low adhesion. Adhesion depended upon both bacterial concentration and period of contact. There was no simple relationship between ability to adhere and liability to cause endocarditis. Formation of dextran did not increase adhesion. The streptococci were more adhesive than strains of Escherichia coli and Neisseria sicca and less adhesive than strains of Staphylococcus aureus and Streptococcus pyogenes.  相似文献   

15.
Cells of Streptococcus sanguis strain Challis were incubated with sodium lauroylsarcosinate to extract surface proteins. A polypeptide of apparent molecular mass 16 kDa comprising about 12% of the extract was purified using anion-exchange chromatography. The polypeptide was shown to be a phosphocarrier protein (HPr) that could also be found in the soluble (cytoplasmic) fraction from cells broken by homogenization with glass beads. In vivo labelling of S. sanguis cells with 32Pi showed that the polypeptide carried a heat- and acid-stable phosphorylation and that during sucrose starvation the HPr became dephosphorylated. Antiserum raised to the S. sanguis HPr reacted on Western blots with HPrs from all oral streptococci tested, together with strains of S. pyogenes and S. salivarius, but not with HPrs from S. faecalis or S. bovis, nor with proteins from Staphylococcus aureus, Bacillus subtilis, Actinomyces viscosus and various lactobacilli. The S. sanguis HPr had a high content of alanine (17.2%) and was similar in overall amino acid composition to the HPrs from S. mutans an S. salivarius. The N-terminal residues (to 37) of the S. sanguis HPr showed strong sequence identity (82%) with the N-terminal sequence of S. faecalis HPr. It is suggested that HPr in S. sanguis is associated closely with the cytoplasmic membrane. Non-disruptive methods of removing cell-surface proteins from streptococci effect release of HPr and possibly other cytoplasmic components.  相似文献   

16.
Streptococcus sanguis, whose growth appears to be independent of the availability of iron, makes no hemes, contains neither catalase nor peroxidase, and can accumulate millimolar concentration levels of H2O2 during aerobic growth. It possesses a single manganese-containing superoxide dismutase whose concentration can be varied over a 50-100-fold range by manipulating the availability of oxygen during growth. Cell extracts contain a soluble NADH-plumbagin diaphorase which mediates O2- production in vitro and presumably also in vivo. Plumbagin increased oxygen consumption by S. sanguis and imposed an oxygen-dependent toxicity. Cells grown aerobically and containing elevated levels of superoxide dismutase were resistant to this toxicity. Dimethyl sulfoxide, which was shown to permeate S. sanguis freely, was used as an indicating scavenger of OH. An in vitro enzymic source of O2- plus H2O2 generated formaldehyde from dimethyl sulfoxide, an indication of OH. production. Either superoxide dismutase or catalase inhibited this OH. production and iron salts augmented it. Intact, aerobic cells of S. sanguis also gave evidence of OH. production, in the presence of plumbagin, but all of it appeared to be generated outside the cells. In addition, 0.5 M dimethyl sulfoxide did not diminish the oxygen-dependent toxicity of plumbagin. We conclude that, in S. sanguis, O2- can exert a toxic effect independent of the production of OH..  相似文献   

17.
The phylogenetic position of Streptococcus and Enterococcus   总被引:26,自引:0,他引:26  
Streptococcus pyogenes, S. equinus, S. bovis, S. salivarius, S. sanguis, S. mutans, S. rattus, S. cricetus, S. lactis, S. raffinolactis and Enterococcus faecalis have been characterized by oligonucleotide cataloguing of their 16S ribosomal RNA. All the organisms form a loose but coherent group that is phylogenetically equivalent to those of lactobacilli, bacilli, the Brochothrix and Listeria group, and related taxa that constitute one of several sublines within the 'Clostridium' branch of Gram-positive eubacteria. Within the Steptococcus-Enterococcus group, organisms fall into three moderately related clusters defined by Enterococcus, the lactic acid streptococci and streptococci of the pyogenic and oral groups, respectively.  相似文献   

18.
AIMS: The purpose of the present study was to examine whether sublethal concentrations of Helichrysum italicum extract could affect some of the cariogenic properties of Streptococcus mutans. METHODS AND RESULTS: We studied the antibacterial activity of H. italicum (ethanolic extract) against oral streptococci (Strep. mutans ATCC 35668, Strep. salivarius ATCC 13419 and Strep. sanguis ATCC 10556) and its influence on cell-surface hydrophobicity, in vitro sucrose-dependent adherence to glass surface and cellular aggregation of Strep. mutans. The results indicate that all streptococci were susceptible to ethanolic extract with minimum inhibitory concentration (MIC) values of 31.25-62.50 microg x ml(-1). Sub-MIC concentrations of H. italicum (7.81-31.25 microg x ml(-1)) reduced the hydrophobicity and the adherence (almost 90%) to glass surface of Strep. mutans. The aggregation in the presence of dextran T2000 was also affected. CONCLUSION: The inhibitory activity of H. italicum extract on Strep. mutans is worthy of further study. SIGNIFICANCE AND IMPACT OF THE STUDY: There is considerable interest in the use of natural compounds as alternative methods to control undesirable micro-organisms.  相似文献   

19.
The hydrophobicity of human oral streptococci was measured with the hexadecane assay modified by the incorporation of polyethylene glycol 6000. Large variability in the hydrophobicity between cultures of some strains grown on different occasions was observed whereas other strains were less variable. The variation in hydrophobicity was significantly reduced by growing the cells in continuous culture in a chemostat under glucose-limiting conditions. The Streptococcus mutans strains used all had low hydrophobicity and the mean hydrophobicity of this species was significantly lower ( P < 0.05) than the mean hydrophobicity of Strep. salivarius, Strep. sanguis Type I and Strep. sanguis Type II strains. This finding supports the view that hydrophobicity is a contributing factor in the adhesion of viridans streptococci to oral surfaces.  相似文献   

20.
All of the lactic streptococci examined except Streptococcus lactis ML8 fermented galactose to lactate, formate, acetate, and ethanol. The levels of pyruvate-formate lyase and lactate dehydrogenase were elevated and reduced, respectively, in galactose-grown cells compared with glucose- or lactose-grown cells. Reduced intracellular levels of both the lactate dehydrogenase activator (fructose, 1,6-diphosphate) and pyruvate-formate lyase inhibitors (triose phosphates) appeared to be the main factors involved in the diversion of lactate to the other products. S. lactis ML8 produced only lactate from galactose, apparently due to the maintenance of high intracellular levels of fructose 1,6-diphosphate and triose phosphates. The growth rates of all 10 Streptococcus cremoris strains examined decreased markedly with galactose concentrations below about 30 mM. This effect appeared to be correlated with uptake predominantly by the low-affinity galactose phosphotransferase system and initial metabolism via the D-tagatose 6-phosphate pathway. In contrast, with four of the five S. lactis strains examined, galactose uptake and initial metabolism involved more extensive use of the high-affinity galactose permease and Leloir pathway. With these strains the relative flux of galactose through the alternate pathways would depend on the exogenous galactose concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号