首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A gene trap approach to identify genes that control development   总被引:3,自引:0,他引:3  
One methodology called gene trap represents a versatile strategy by which murine genes that control developmental events can be captured and identified with corresponding mutants produced at the same time. Gene trap methodology has been developed and several genes and their mutants have been analyzed, but almost all of the genes reported are those already known or murine homologs of other species. In this study, the efficiency of the gene trap methodology was improved and a novel mutant mouse strain named jumonji established which displayed an intriguing defect. Homozygous fetal mice died in utero and a significant proportion of the homozygotes showed abnormal groove formation on the neural plate and a defect in neural tube closure with a mixed genetic background of 129/Ola and BALB/c. The trapped gene believed to be responsible for these phenotypes encodes a novel nuclear protein. The results reveal that the gene trap approach can identify unknown interesting genes in murine development. The gene trap strategy, however, has several problems, the greatest of which is the difficulty in prescreening embryonic stem (ES) cells for interesting trapped genes. Recent studies are solving this problem and show that the prescreening of ES cells for genes with several characteristics is possible.  相似文献   

2.
3.
4.
PRL-1 is a particularly interesting immediate-early gene because it is induced in mitogen-stimulated cells and regenerating liver but is constitutively expressed in insulin-treated rat H35 hepatoma cells, which otherwise show normal regulation of immediate-early genes. PRL-1 is expressed throughout the course of hepatic regeneration, and its expression is elevated in a number of tumor cell lines. Sequence analysis reveals that PRL-1 encodes a 20-kDa protein with an eight-amino-acid consensus protein tyrosine phosphatase (PTPase) active site. PRL-1 is able to dephosphorylate phosphotyrosine substrates, and mutation of the active-site cysteine residue abolishes this activity. As PRL-1 has no homology to other PTPases outside the active site, it is a new type of PTPase. PRL-1 is located primarily in the cell nucleus. Stably transfected cells which overexpress PRL-1 demonstrate altered cellular growth and morphology and a transformed phenotype. It appears that PRL-1 is important in normal cellular growth control and could contribute to the tumorigenicity of some cancer cells.  相似文献   

5.
6.
The analysis of newt lens regeneration has been an important subject in developmental biology. Recently, it has been reported that the genes involved in the normal eye development are also expressed in the regenerative process of lens regeneration in the adult newt. However, functional analysis of these genes has not been possible, because there is no system to introduce genes efficiently into the cells involved in the regeneration. In the present study, lipofection was used as the method for gene transfer in cultured pigmented iris cells that can transdifferentiate into lens cells in newt lens regeneration. Positive expression of a reporter gene was obtained in more than 70% of cells. In addition, the aggregate derived from gene-transfected cells maintained its expression at a high level for a long time within the host tissue. To verify the effectiveness of this model system with a reporter gene in lens regeneration, Pax6, which is suggested to be involved in normal eye development and lens regeneration, was transfected. Ectopic expression of lens-specific crystallins was obtained in cells that show no such activity in normal lens regeneration. These results made it possible for the first time to analyze the molecular mechanism of lens regeneration in the adult newt.  相似文献   

7.
8.
9.
10.
11.
Protein S is an abundant spore coat protein produced during fruiting body formation (development) of the bacterium Myxococcus xanthus. We have cloned the DNA which codes for protein S and have found that this DNA hybridizes to three protein S RNA species from developmental cells but does not hybridize to RNA from vegetative cells. The half-life of protein S RNA was found to be unusually long, about 38 minutes, which, at least in part, accounts for the high level of protein S synthesis observed during development. Hybridization of restriction fragments from cloned M. xanthus DNA to the developmental RNAs enabled us to show that M. xanthus has two directly repeated genes for protein S (gene 1 and gene 2) which are separated by about 10(3) base-pairs on the bacterial chromosome. To study the expression of the protein S genes in M. xanthus, eight M. xanthus strains were isolated with Tn5 insertions at various positions in the DNA which codes for protein S. The strains which contained insertions in gene 1 or between gene 1 and gene 2 synthesized all three protein S RNA species and exhibited normal levels of protein S on spores. In contrast, M. xanthus strains exhibited normal levels of protein S on spores. In contrast, M. xanthus strains with insertions in gene 2 had no detectable protein S on spores and lacked protein S RNA. Thus, gene 2 is responsible for most if not all of the production of protein S during M. xanthus development. M. xanthus strains containing insertions in gene 1, gene 2 or both genes, were found to aggregate and sporulate normally even though strains bearing insertions in gene 2 contained no detectable protein S. We examined the expression of gene 1 in more detail by constructing a fusion between the lacZ gene of Escherichia coli and the N-terminal portion of protein S gene 1 of M. xanthus. The expression of beta-galactosidase activity in an M. xanthus strain containing the gene fusion was shown to be under developmental control. This result suggests that gene 1 is also expressed during development although apparently at a much lower level than gene 2.  相似文献   

12.
A transposon-induced mutant (T8-1) of Bradyrhizobium japonicum (61A76) was unable to develop into the nitrogen-fixing endosymbiotic form, the bacteroid. Comparison between this mutant and T5-95, an ineffective (non-nitrogen fixing, Fix-) mutant, confirmed that the process of bacteroid development is a distinct phase of differentiation of the endosymbiont and is independent of nitrogen fixation activity. The T8-1 mutant was able to induce normal-size nodules which differentiated two plant cell types and contained numerous infection threads. However, the infected cells were devoid of bacteroids. Electron microscopy revealed that the ends of the infection threads were broken down in a normal manner once the thread had penetrated the cells, but the mutant was not internalized by endocytosis. The lack of peribacteroid membrane (PBM) in nodules induced by this mutant was correlated with a reduced level of expression of plant genes coding for PBM nodulins. These genes were expressed in the T5-95 mutant, showing that the low expression in T8-1 was not due to the lack of nitrogen fixation. One of the PBM nodulins, nodulin-26, was found at normal levels in the nodules which lack PBM, suggesting that there are at least two developmental stages in PBM biosynthesis. These data suggest that a coordination of plant and Rhizobium gene expression is required for the release and internalization of bacteria into the PBM compartments of infected cells of nodules.author for correspondence  相似文献   

13.
Development of vertebrate nervous system is a complex process which involves differential gene expression and disruptions in this process or in the mature brain, may lead to neurological disorders and diseases. Extensive work that spanned several decades using rodent models and recent work on stem cells have helped uncover the intricate process of neuronal differentiation and maturation. There are various morphological changes, genetic and epigenetic modifications which occur during normal mammalian neural development, one of the chromatin modifications that controls vital gene expression are the posttranslational modifications on histone proteins, that controls accessibility of translational machinery. Among the histone modifiers, polycomb group proteins (PcGs), such as Ezh2, Eed and Suz12 form large protein complexes—polycomb repressive complex 2 (PRC2); while Ring1b and Bmi1 proteins form core of PRC1 along with accessory proteins such as Cbx, Hph, Rybp and Pcgfs catalyse histone modifications such as H3K27me3 and H2AK119ub1. PRC1 proteins are known to play critical role in X chromosome inactivation in females but they also repress the expression of key developmental genes and tightly regulate the mammalian neuronal development. In this review we have discussed the signalling pathways, morphogens and nuclear factors that initiate, regulate and maintain cells of the nervous system. Further, we have extensively reviewed the recent literature on the role of Ring1b and Bmi1 in mammalian neuronal development and differentiation; as well as highlighted questions that are still unanswered.  相似文献   

14.
15.
16.
17.
The LIM-HD gene tailup (tup; also known as islet) has been categorised as a prepattern gene that antagonises the formation of sensory bristles on the notum of Drosophila by downregulating the expression of the proneural achaete-scute genes. Here we show that tup has an earlier function in the development of the imaginal wing disc; namely, the specification of the notum territory. Absence of tup function causes cells of this anlage to upregulate different wing-hinge genes and to lose expression of some notum genes. Consistently, these cells differentiate hinge structures or modified notum cuticle. The LIM-HD co-factors Chip and Ssdp are also necessary for notum specification. This suggests that Tup acts in this process in a complex with Chip and Ssdp. Overexpression of tup, together with araucan, a 'pronotum' gene of the iroquois complex (Iro-C), synergistically reinforces the weak capacity of either gene, when overexpressed singly, to induce ectopic notum-like development. Whereas the Iro-C genes are activated in the notum anlage by EGFR signalling, tup is positively regulated by Dpp signalling. Our data support a model in which the EGFR and Dpp signalling pathways, with their respective downstream Iro-C and tup genes, converge and cooperate to commit cells to the notum developmental fate.  相似文献   

18.
G Loubradou  J Bégueret  B Turcq 《Genetics》1999,152(2):519-528
Cell death via vegetative incompatibility is widespread in fungi but molecular mechanism and biological function of the process are poorly understood. One way to investigate this phenomenon was to study genes named mod that modified incompatibility reaction. In this study, we cloned the mod-D gene that encodes a Galpha protein. The mod-D mutant strains present developmental defects. Previously, we showed that the mod-E gene encodes an HSP90. The mod-E1 mutation suppresses both vegetative incompatibility and developmental defects due to the mod-D mutation. Moreover, we isolated the PaAC gene, which encodes an adenylate cyclase, as a partial suppressor of the mod-D1 mutation. Our previous results showed that the molecular mechanisms involved in vegetative incompatibility and developmental pathways are connected, suggesting that vegetative incompatibility may result from disorders in some developmental steps. Our new result corroborates the involvement of mod genes in signal transduction pathways. As expected, we showed that an increase in the cAMP level is able to suppress the defects in vegetative growth due to the mod-D1 mutation. However, cAMP increase has no influence on the suppressor effect of the mod-D1 mutation on vegetative incompatibility, suggesting that this suppressor effect is independent of the cAMP pathway.  相似文献   

19.
Lack of both maternal and zygotic gene activity at the zeste-white 3 (zw3) locus causes severe developmental transformations. Embryos derived from germ cells that lack zw3+ gene activity die during embryogenesis and have a phenotype that is similar to that of embryos mutant for the segment polarity gene naked (nkd). In both nkd and germ line clone-derived zw3 embryos the pattern elements derived from the anterior-most part of each segment, the denticle belts, are deleted. Similar abnormal patterns of the zygotically expressed genes engrailed and Ultrabithorax are detected in both mutants, suggesting that the two genes are involved in the same developmental process. Additionally, the induction of clones of zw3 mutant cells in imaginal discs causes homeotic transformations of noninnervated hair cells into innervated sensory bristles. The multiple roles of zw3 during development and its possible interactions with the zygotic gene nkd are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号