首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HPr of the bacterial phosphotransferase system is a histidine-containing phospho-carrier protein. It is phosphorylated at a single histidyl residue with phosphoenolpyruvate (PEP) and enzyme I and transfers the histidyl-bound phosphoryl group to a variety of factor III proteins. Recently, we described an HPr phosphorylated at a seryl residue (P-Ser-HPr), which is formed in an adenosine 5'-triphosphate dependent reaction catalyzed by a protein kinase [Deutscher, J., & Saier, M.-H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. Now we demonstrate that this P-Ser-HPr is an altered substrate of phosphorylated enzyme I and factor III proteins compared to unphosphorylated HPr. Thus, P-Ser-HPr of Streptococcus lactis is phosphorylated about 5000 times slower by PEP and enzyme I than HPr. The slow phosphorylation by PEP and enzyme I can be overcome when factor III protein specific for gluconate (factor III(Gct)) of Streptococcus faecalis is added. Most likely, a complex of P-Ser-HPr and factor III(Gct) is formed which then becomes phosphorylated as fast as free HPr. Factor III protein specific for lactose (factor III(Lac)) of Staphylococcus aureus also enhances the phosphorylation of P-Ser-HPr by enzyme I and PEP, but its effect is lower. Thus, P-Ser-HPr is phosphorylated 70-100-fold slower in the presence of factor III(Lac) than in the presence of factor III(Gct). The described interaction of P-Ser-HPr with enzyme I in the presence of different factor III proteins could account for the regulation of sugar uptake within the phosphotransferase system. Some of the phosphoenolpyruvate-dependent phosphotransferase system sugars like glucose are known to be taken up in preference to others, for example, lactose.  相似文献   

2.
Enzyme IIImtl is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, we report the isolation of IIImtl from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of IIImtl with [32P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase Glu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp- Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which we assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the IIImtl proteins was found to be 15,000. We have also determined the N-terminal sequence of both proteins. Comparison of the IIImtl peptide sequences and the C-terminal part of the enzyme IImtl of Escherichia coli reveals considerable sequence homology, which supports the suggestion that IImtl of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II. In particular, the homology of the active-center peptide of IIImtl of S. aureus and S. carnosus with the enzyme IImtl of E. coli allows one to predict the N-3 histidine phosphorylation site within the E. coli enzyme.  相似文献   

3.
Sugar transport via the phosphoenolpyruvate (PEP) phosphotransferase system involves PEP-dependent phosphorylation of the general phosphotransferase system protein, HPr, at histidine 15. However, gram-positive bacteria can also carry out ATP-dependent phosphorylation of HPr at serine 46 by means of (Ser)HPr kinase. In this study, we demonstrate that (Ser)HPr kinase in crude preparations of Streptococcus mutans Ingbritt and Streptococcus salivarius ATCC 25975 is membrane associated, with pH optima of 7.0 and 7.5, respectively. The latter organism possessed 7- to 27-fold-higher activity than S. mutans NCTC 10449, GS-5, and Ingbritt strains. The enzyme in S. salivarius was activated by fructose-1,6-bisphosphate (FBP) twofold with 0.05 mM ATP, but this intermediate was slightly inhibitory with 1.0 mM ATP at FBP concentrations up to 10 mM. Similar inhibition was observed with the enzyme from S. mutans Ingbritt. A variety of other glycolytic intermediates had no effect on kinase activity under these conditions. The activity and regulation of (Ser)HPr kinase were assessed in vivo by monitoring P-(Ser)-HPr formation in steady-state cells of S. mutans Ingbritt grown in continuous culture with limiting glucose (10 and 50 mM) and with excess glucose (100 and 200 mM). All four forms of HPr [free HPr, P approximately (His)-HPr, P-(Ser)-HPr, and P approximately (His)-P-(Ser)-HPr] could be detected in the cells; however, significant differences in the intracellular levels of the forms were apparent during growth at different glucose concentrations. The total HPr pool increased with increasing concentrations of glucose in the medium, with significant increases in the P-(Ser)-HPr and P approximately HHis)-P-(Ser)-HPr concentrations. For example, while total PEP-dependent phosphorylation [P approximately(His)-HPr plus P approximately (His)-P-(Ser)-HPr] varied only from 21.5 to 52.5 microgram mg of cell protein (-1) in cells grown at the four glucose concentrations, the total ATP-dependent phosphorylation [P-(Ser)-HPr plus P approximately (His)-P-(Ser)-HPr] increased 12-fold from the 10 mM glucose-grown cells (9.1 microgram mg of cell protein (-1) to 106 and 105 microgram mg(-1) in the 100 and 200 mM glucose-grown cultures, respectively. (Ser)HPr kinase activity in membrane preparations of the cells varied little between the 10, 50, and 100 mM glucose-grown cells but increased threefold in the 200 mM glucose-grown cells. The intracellular levels of ATP, glucose-6-phosphate, and FBP increased with external glucose concentration, with the level of FBP being 3.8-fold higher for cells grown with 200 mM glucose than for those grown with 10 mM glucose. However, the variation in the intracellular levels of FBP, particularly between cells grown with 100 and 200 mM glucose, did not correlate with the extent of P-(Ser)-HPr formation, suggesting that the activity of (Ser)HPr kinase is not critically dependent on the availability of intracellular FBP.  相似文献   

4.
Histidine-containing protein (HPr) of gram-positive bacteria was found to be phosphorylated at a seryl residue (P-ser-HPr) in an ATP-dependent reaction catalyzed by a protein kinase (J. Deutscher and M. H. Saier, Jr., Proc. Natl. Acad. Sci. U.S.A. 80:6790-6794, 1983). Here we describe the purification and characterization of a soluble enzyme of Streptococcus faecalis which splits the phosphoryl bond in P-ser-HPr. The enzyme has a molecular weight of ca. 7.5 X 10(4), as determined by its migration behavior on a Sephacryl S-200 column. On native polyacrylamide gels the purified enzyme produced only one protein band. On sodium dodecyl sulfate-polyacrylamide gels we found one major protein band of molecular weight 2.9 X 10(4) and two minor protein bands of molecular weights 2.3 X 10(4) and 7 X 10(4). Fructose 1,6-diphosphate, which stimulated the ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, had no effect on the phosphatase activity. Other glycolytic intermediates also had no effect. However, inorganic phosphate, which inhibited the ATP-dependent HPr kinase, stimulated the P-ser-HPr phosphatase. EDTA at a concentration of 0.1 mM completely inhibited the phosphatase. Divalent cations like Mg2+, Mn2+, and Co2+ overcame the inhibition by EDTA. Fe2+, Zn2+, and Cu2+ had no effect, whereas Ca2+ slightly inhibited the phosphatase. ATP was also found to inhibit the phosphatase. Under conditions in which ATP severely inhibited the phosphatase, ADP was found to have no effect on the enzyme activity. Besides P-ser-HPr of S. faecalis, the phosphatase was also able to hydrolyze the phosphoryl bond in P-ser-HPr of Streptococcus lactis, Staphylococcus aureus, Bacillus subtilis, Streptococcus pyogenes, and Lactobacillus casei. Phosphoenolpyruvate-dependent o-nitrophenyl-beta-D-galactopyranoside phosphorylation, catalyzed by the S. aureus phosphoenolpyruvate:lactose phosphotransferase system, was about 150-fold decreased in the presence of P-ser-HPr of S. aureus, as compared with HPr. However, when P-ser-HPr was first incubated with P-ser-HPr phosphatase to allow complete hydrolysis of the phosphoryl bond, it had the same activity as HPr. Besides this cytoplasmic phosphoprotein phosphatase, we detected a membrane-bound phosphatase which also hydrolyzed the phosphoryl bond in P-ser-HPr.  相似文献   

5.
In Gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system can be phosphorylated at two distinct sites, His-15 and Ser-46. While the former phosphorylation is implicated in phosphoryl transfer to the incoming sugars, the latter serves regulatory purposes. In Bacillus subtilis, the two phosphorylation events are mutually exclusive. In contrast, doubly phosphorylated HPr is present in cell extracts of Mycoplasma pneumoniae. In this work, we studied the ability of the two single phosphorylated HPr species to accept a second phosphoryl group. Indeed, both Enzyme I and the HPr kinase/phosphorylase from M. pneumoniae are able to use phosphorylated HPr as a substrate. The formation of doubly phosphorylated HPr is substantially slower as compared to the phosphorylation of free HPr. However, the rate of formation of doubly phosphorylated HPr is sufficient to account for the amount of HPr(His approximately P)(Ser-P) detected in M. pneumoniae cells.  相似文献   

6.
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolytic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system, HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction [Deutscher, J., & Saier, M. H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. The site of ATP-dependent phosphorylation in HPr of S. faecalis has now been determined. [32P]P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, we obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, we isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Phosphorylation of thylakoid proteins by a purified kinase   总被引:1,自引:0,他引:1  
A simplified method is given for the purification of a 64-kilodalton protein kinase from spinach or pea thylakoid membranes (Coughlan, S., and Hind, G. (1986) J. Biol. Chem. 261, 11378-11385). In a heterogeneous reconstitution system comprised of purified kinase and washed thylakoids (having their intrinsic kinase inactivated or removed), endogenous light-harvesting pigment protein of photosystem II could serve as a substrate. Its phosphorylation did not require rebinding of kinase to the thylakoid membrane and, like the phosphorylation of solubilized pigment protein, was not under redox control. No reconstitution was observed upon replacing 64-kilodalton protein kinase with 25-kilodalton protein kinase (Coughlan, S., and Hind, G. (1986) J. Biol. Chem. 261, 14062-14068). Tryptic digestion of phosphorylated membranes removed the site of phosphorylation; the phosphorylated amino acid present in light-harvesting pigment protein and its tryptic peptide was threonine. Immunoglobulin from a polyclonal antiserum, raised against the purified enzyme, fully inhibited kinase activity toward solubilized and endogenous pigment protein. At higher titers, the antibody was effective in totally inhibiting the redox-sensitive phosphorylation of thylakoid proteins by endogenous kinase; inhibition profiles for phosphorylation of pigment protein and thylakoid proteins of 32, 16, and 9 kilodaltons were essentially identical. The 64-kilodalton protein kinase would thus appear to be responsible for all of the observed phosphorylation of thylakoid phosphoproteins.  相似文献   

8.
CcpA, the repressor/activator mediating carbon catabolite repression and glucose activation in many Gram-positive bacteria, has been purified from Bacillus megaterium after fusing it to a His tag. CcpA-his immobilized on a Ni-NTA resin specifically interacted with HPr phosphorylated at seryl residue 46. HPr, a phosphocarrier protein of the phosphoenolpyruvate: glycose phosphotransferase system (PTS), can be phosphorylated at two different sites: (i) at His-15 in a PEP-dependent reaction catalysed by enzyme I of the PTS; and (ii) at Ser-46 in an ATP-dependent reaction catalysed by a metabolite-activated protein kinase. Neither unphosphorylated HPr nor HPr phosphorylated at His-15 nor the doubly phosphorylated HPr bound to CcpA. The interaction with seryl-phosphorylated HPr required the presence of fructose 1,6-bisphosphate. These findings suggest that carbon catabolite repression in Gram-positive bacteria is a protein kinase-triggered mechanism. Glycolytic intermediates, stimulating the corresponding protein kinase and the P-ser-HPr/CcpA complex formation, provide a link between glycolytic activity and carbon catabolite repression. The sensitivity of this complex formation to phosphorylation of HPr at His-15 also suggests a link between carbon catabolite repression and PTS transport activity.  相似文献   

9.
The ptsH gene from Bacillus thuringiensis israelensis (Bti), coding for the phosphocarrier protein HPr of the phosphotransferase system has been cloned and overexpressed in Escherichia coli. Comparison of its primary sequence with other HPr sequences revealed that the conserved His15 and Ser46 residues were shifted by one amino acid and located at positions 14 and 45, respectively. The biological activity of the protein was not affected by this change. When expressed in a Bacillus subtilis ptsH deletion strain, Bti HPr was able to complement the functions of HPr in sugar uptake and glucose catabolite repression of the gnt and iol operons. A modified form of HPr was detected in Bti cells, and also when Bti ptsH was expressed in E. coli or B. subtilis. This modification was identified as phosphorylation, because alkaline phosphatase treatment converted the modified form to unmodified HPr. The phosphoryl bond in the new form of in vivo phosphorylated HPr was resistant to alkali treatment but sensitive to acid treatment, suggesting phosphorylation at a histidine residue. Replacement of His14 with alanine in Bti HPr prevented formation of the new form of phosphorylated HPr. The phosphorylated HPr was stable at 60 degrees C, in contrast with HPr phosphorylated at the N delta 1 position of His14 with phosphoenolpyruvate and enzyme I. (31)P-NMR spectroscopy was used to show that the new form of P-HPr carried the phosphoryl group bound to the N epsilon 2 position of His14 of Bti HPr. Phosphorylation of HPr at the novel site did not occur when Bti HPr was expressed in an enzyme I-deficient B. subtilis strain. In addition, P-(N epsilon 2)His-HPr did not transfer its phosphoryl group to the purified glucose-specific enzyme IIA domain of B. subtilis.  相似文献   

10.
Mutational Analysis of the Role of HPr in Listeria monocytogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

11.
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

12.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

13.
14.
HPr is a protein of the bacterial phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). In Gram-positive bacteria, HPr can be phosphorylated on Ser(46) by HPr(Ser) kinase/phosphorylase (HPrK/P) and on His(15) by enzyme I (EI) of the PTS. In vitro studies have shown that phosphorylation on one residue greatly inhibits the second phosphorylation. However, streptococci contain significant amounts of HPr(Ser-P)(His approximately P) during exponential growth, and recent studies suggest that phosphorylation of HPr(Ser-P) by EI is involved in the recycling of HPr(Ser-P)(His approximately P). We report in this paper a study on the phosphorylation of Streptococcus salivarius HPr, HPr(Ser-P), and HPr(S46D) by EI. Our results indicate that (i) the specificity constant (k(cat)/K(m)) of EI for HPr(Ser-P) at pH 7.9 was approximately 5000-fold smaller than that observed for HPr, (ii) no metabolic intermediates were able to stimulate HPr(Ser-P) phosphorylation, (iii) the rate of HPr phosphorylation decreased at pHs below 6.5, while that of HPr(Ser-P) increased and was almost 10-fold higher at pH 6.1 than at pH 7.9, (iv) HPr(S46D), a mutated HPr alleged to mimic HPr(Ser-P), was also phosphorylated more efficiently under acidic conditions, and, lastly, (v) phosphorylation of Bacillus subtilis HPr(Ser-P) by B. subtilis EI was also stimulated at acidic pH. Our results suggest that the high levels of HPr(Ser-P)(His approximately P) in streptococci result from the combination of two factors, a high physiological concentration of HPr(Ser-P) and stimulation of HPr(Ser-P) phosphorylation by EI at acidic pH, an intracellular condition that occurs in response to the acidification of the external medium during growth of the culture.  相似文献   

15.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

16.
The bacterial phosphoenolpyruvate–sugar phosphotransferase system (PTS) mediates the uptake and phosphorylation of carbohydrates and is involved in signal transduction. In response to the availability of carbohydrates it modulates catabolite repression, intermediate metabolism, gene expression and chemotaxis. It is ubiquitous in bacteria but does not occur in animals and plants. Uniqueness and pleiotropic function make the PTS a target for new antibacterial drugs. Enzyme I is the first component of the divergent protein phosphorylation cascade of the PTS. It transfers phosphoryl groups from phosphoenolpyruvate to the general phosphoryl carrier protein HPr. Six 15-mer, nine 10-mer and nine 6-mer peptides that inhibit enzyme I were selected from phage display libraries. Of these, 16 were synthesized and characterized. The majority of the peptides contain a histidine with an adjacent arginine. Two peptides were found to contain cysteines but no histidine. All peptides are rich in basic residues and lack acidic amino acids. The peptides inhibit the phosphotransferase system in vitro with IC50 of between 10 μM and 2 mM. Some, but not all, of the peptides inhibit cell growth in the agar diffusion test by an as yet undefined mechanism. All peptides are phosphorylated by enzyme I, and some are regenerated by slow autocatalytic hydrolysis of the phospho–peptide bond.  相似文献   

17.
The dihydroxyacetone kinase (DhaK) of Escherichia coli consists of three soluble protein subunits. DhaK (YcgT; 39.5 kDa) and DhaL (YcgS; 22.6 kDa) are similar to the N- and C-terminal halves of the ATP-dependent DhaK ubiquitous in bacteria, animals and plants. The homodimeric DhaM (YcgC; 51.6 kDa) consists of three domains. The N-terminal dimerization domain has the same fold as the IIA domain (PDB code 1PDO) of the mannose transporter of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS). The middle domain is similar to HPr and the C-terminus is similar to the N-terminal domain of enzyme I (EI) of the PTS. DhaM is phosphorylated three times by phosphoenolpyruvate in an EI- and HPr-dependent reaction. DhaK and DhaL are not phosphorylated. The IIA domain of DhaM, instead of ATP, is the phosphoryl donor to dihydroxyacetone (Dha). Unlike the carbohydrate-specific transporters of the PTS, DhaK, DhaL and DhaM have no transport activity.  相似文献   

18.
19.
HPr of the Gram-positive bacterial phosphotransferase system (PTS) can be phosphorylated by an ATP-dependent protein kinase on a serine residue or by PEP-dependent Enzyme I on a histidyl residue. Both phosphorylation events appear to influence the metabolism of non-PTS carbon sources. Catabolite repression of the gluconate (gnt) operon of B. subtilis appears to be regulated by the former phosphorylation event, while glycerol kinase appears to be regulated by the latter phosphorylation reaction. The extent of our understanding of these processes will be described. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Cultured neurons from rat embryo striatum were found to contain two structurally distinct forms of pp60c-src. The 60-kilodalton (kDa) form appeared similar to pp60c-src from cultured rat fibroblasts or astrocytes. The 61-kDa form was specific to neurons and differed in the NH2-terminal 18 kDa of the molecule. In undifferentiated neurons the predominant phosphorylated species of pp60c-src was the fibroblast form. Upon differentiation, a second phosphorylated form of pp60c-src was detected. This form had two or more additional sites of serine phosphorylation within the NH2-terminal 18-kDa region of the molecule, one of which was Ser-12. The specific protein-tyrosine kinase activity of the total pp60c-src population increased 14-fold, as measured by autophosphorylation, or 7-fold, as measured by phosphorylation of an exogenous substrate, as striatal neurons differentiated. This elevation in protein kinase activity occurred without a detectable decrease in Tyr-527 phosphorylation or increase in Tyr-416 phosphorylation. Our results support the idea that the expression of the neuron-specific form of pp60c-src and the increase in specific protein kinase activity may be important for neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号