首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
Arginine specific reagents are found to be powerful inhibitors of anion exchange in the red blood cell membrane. Some of these inhibitors such as cyclohexandione, phenylglyoxal and 2, 3-butandione are found to produce their inhibition by interacting covalently with band 3. In contrast to the action of these compounds, the inhibition caused by the phenylglyoxal derivative 4-hydroxy-3-nitrophenyl-glyoxal has been found to be completly reversible. In extending the studies on the mode of action of these compounds on sulfate exchange and to get some more information about their binding site, the degree of inhibition caused by different phenylglyoxal derivatives which have a similar core but differ in their substituent groups have been compared. The interaction between the binding sites of these compounds and other anion transport inhibitors have also been studied.  相似文献   

2.
Inhibition of anion transport by the arginine specific reagents phenylglyoxal and 1,2 cyclohexandione depends on the pH and anion concentration in the medium. At pH 8.0, chloride ions protect the transport system against inhibition by PG and 1,2 CHD, while sulfate ions do not protect (1). In the present paper it is shown that at pH 6.5 and 7 both sulfate ions and chloride ions protect the transport system. The protection increases with increasing concentration of the two substrate ions.  相似文献   

3.
Summary A chromophoric derivative of phenylglyoxal, 4-hydroxy-3-nitrophenylglyoxal (HNPG), known to be highly selective for modification of arginine residues in aqueous solution is found to be a potent inhibitor of anion transport across the red cell membrane. In contrast to the action of all other arginine-specific reagents used under the experimental conditions in this laboratory, the action of HNPG on sulfate transport is completely reversible. Hence, a kinetic analysis of its inhibitory effect on SO 4 2– self-exchange could be performed. The effect of increasing chloride concentration on the inhibitory potency of HNPG is consistent with the concept that Cl and HNPG compete for the same site on the anion transporter. The IC50 value for the inhibition of SO 4 2– exchange with HNPG is about 0.13mm at pH 8.0 and 0.36mm at pH 7.4, and the Hill coefficient for the interaction between the transporter and the inhibitor is near one at both pH's. HNPG is able to protect the transport system against inhibition with the (under our experimental conditions) irreversibly acting arginine specific reagent, phenylglyoxal. Partial inactivation of the transport system with phenylglyoxal lowers the maximal rates of SO 4 2– and chloride exchange but does not modify the apparentK s for the substrate anions. Reversibly acting anion transport inhibitors known to interact with the DIDS binding site like salicylate, tetrathionate, APMB, DNDS, and flufenamate are able to protect the transport system against phenylglyoxalation. Other inhibitors like phloretin and phlorizin have no effect.  相似文献   

4.
Sealed reticulocyte ghosts were treated with reagents that modify a variety of amino acid residues. Only ninhydrin and phenylglyoxal, both modifiers of arginyl residues, produced inhibition of the initial rate of 59Fe2+ uptake. The inhibition (i) was dependent on the concentration of ninhydrin or phenylglyoxal, (ii) increased from pH 7 to 9, a feature of the modification of arginine by ninhydrin or phenylglyoxal, and (iii) was blocked when Fe2+ was present during the modification step. A23187, an effective membrane Fe2+ transporter, diminished the inhibitory effect of ninhydrin and phenylglyoxal, indicative that the transport of iron through the membrane, and not a secondary process, was selectively inhibited. We conclude that the iron transporter from the plasma membrane of erythroid cells has one or more arginyl residues in a segment accessible to ninhydrin or phenylglyoxal, and that this residue is involved in the transmembrane transport of iron.This work was supported by grant 1080-91 from FONDECYT, Chile.  相似文献   

5.
The effect of arginine-specific reagents on the activity of the partially purified and reconstituted tricarboxylate carrier of the inner mitochondrial membrane has been studied. It has been found that 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal and phenylglyoxal derivatives inhibit the reconstituted citrate/citrate exchange activity. The inhibitory potency of the phenylglyoxal derivatives increases with increasing hydrophilic character of the molecule. Citrate protects the tricarboxylate carrier against inactivation caused by the arginine-specific reagents. Other tricarboxylates, which are not substrates of the carrier, have no protective effect. The results indicate that at least one essential arginine residue is located at the substrate-binding site of the tricarboxylate carrier and that the vicinity of the essential arginine(s) has a hydrophilic character.  相似文献   

6.
We have characterized the reaction of arginine-specific reagents with the phosphate and glucose carriers of the kidney brush-border membrane. The inhibition of phosphate and glucose transport by phenylglyoxal follows pseudo-first-order kinetics. The rate of inactivation of phosphate transport by 50 mM phenylglyoxal was about 3-fold higher than that for glucose transport (kapp was 0.052 s-1 for the uptake of phosphate and 0.019 s-1 for the uptake of glucose). The order of the reaction, n, with respect to phenylglyoxal was 1.25 and 1.31 for the inactivation of phosphate and glucose transport, respectively. The inactivation of phosphate flux by p-hydroxyphenylglyoxal also follows pseudo-first-order kinetics, but the inhibition rate (kapp = 0.0012 s-1) was slower than with phenylglyoxal. The inactivation increased with the alkalinity of the preincubation medium for both phosphate and glucose fluxes and was maximal at pH 9.0. The inactivation of phosphate flux by phenylglyoxal depends upon the presence of an alkaline intravesicular pH. Extravesicular pH does not affect the reaction. Phenylglyoxal does not interfere with the recycling of the protonated carrier since phosphate uptake is inhibited independently of the pH used for transport measurements. Moreover, phenylglyoxal completely abolished trans stimulation by phosphate. Trans sodium inhibited phosphate uptake and abolished the pH profile of phosphate uptake.  相似文献   

7.
Laila Zaki 《FEBS letters》1984,169(2):234-240
The reaction of phenylglyoxal, a reagent specific for arginine residues, with erythrocyte membrane at pH 7.4 results in complete inhibition of sulfate equilibrium exchange across human red cells. The inactivation was found to be concentration and time depenent. The binding sites of this reagent in the anion transport protein (band 3) under these conditions were determined by using [14C]phenylglyoxal. The rate of incorporation of the radioactivity into band 3 gave a good correlation with the rate of inactivation. Under conditions where the transport is completely inhibited about 6 mol [14C]phenylglyoxal are incorporated into 1 mol band 3. Treating the [14C]phenylglyoxalated ghosts at different degrees of inactivation with extracellular chymotrypsin showed that about two-thirds of these binding sites are located on the 60 kDa fragment.  相似文献   

8.
Chemical modification of spinach chloroplasts by phenylglyoxal and dansyl chloride resulted in inhibition of NADP photoreduction. The rate of inactivation was higher with both reagents when modification was carried out in the light with methylviologen or phenazine methosulfate present. Uncouplers prevent the effect of light. Electron transport from water to methylviologen was not affected by the modifiers.  相似文献   

9.
R Suchi  Y Stern-Bach  S Schuldiner 《Biochemistry》1992,31(49):12500-12503
We have characterized the effects of phenylglyoxal and diethyl pyrocarbonate (DEPC) on the catalytic cycle of the amine transporter in chromaffin granule membrane vesicles. Both reagents inhibited transport in a dose-dependent reaction (with IC50 values of 8 and 1 mM, respectively). The inhibition by DEPC was specific for histidyl groups since transport could be restored by treatment with hydroxylamine. Neither phenylglyoxal nor DEPC inhibited binding of either R1- or R2-type ligands, indicating that the inhibition of transport is not due to a direct interaction with either of the known binding sites. Interestingly, however, the acceleration of reserpine binding (an R1 ligand) by a transmembrane H+ gradient is inhibited by both reagents at concentrations identical to those which inhibit transprot. As previously demonstrated, transport of one proton across the transporter is required for this acceleration to take place [Rudnick, G., Steiner-Mordoch, S., Fishkes, H., Stern-Bach, Y., & Schuldiner, S. (1990) Biochemistry 29, 603-608]. Therefore, we suggest that either proton transport or a conformational change induced by proton transport is inhibited by both types of reagents.  相似文献   

10.
The effects of trimethyl-tin (anion-hydroxyde ionophore, inhibiting oxydative phosphorylation and H+-ATPase) probenecid (inhibitor of anion transport in neural cells) and phenylglyoxal (arginine-specific reagent, inhibiting chloride exchanges in erythrocytes) were examined in Torpedo synaptosomes prepared from electric organ. All drugs significantly reduced the stimulated release of acetylcholine triggered by depolarization of nerve endings with high-K+ and/or gramicidin D. In contrast, trimethyl-tin, probenecid and phenylglyoxal did not affect the ionophore A23187-induced release of acetylcholine from the synaptosomes. The inhibitory potency of the compound trimethyl-tin was found to be similar to that of probenecid and phenylglyoxal on depolarization-induced acetylcholine release. This leads us to suggest that a relationship exists between modification of anion distribution during depolarization and acetylcholine release process. Moreover, since the release of ACh by calcium-ionophore A23187 was unaffected by trimethyl-tin, probenecid or phenylglyoxal, such compounds may also have an action on voltage-dependent Ca2+ flux across presynaptic membrane.  相似文献   

11.
Chloride exchange in resealed human erythrocyte ghosts can be irreversibly inhibited with phenylglyoxal, a reagent specific for the modification of arginyl residues in proteins. Phenylglyoxal inhibits anion transport in two distinct ways. At 0 degrees C, inhibition is instantaneous and fully reversible, whereas at higher temperature in an alkaline extracellular medium, covalent binding of phenylglyoxal leads to an irreversible inhibition of the transport membranes system. Indiscriminate modification of membrane arginyl residues was prevented by reacting the with phenylglyoxal in an alkaline extracellular medium while maintaining intracellular pH near neutrality. The rate of modification of anion transport depends on phenylglyoxal concentration, pH, temperature, and the presence of anions and reversible inhibitors of the anion transport system in fashions that are fully compatible with the conclusion that phenylglyoxal modifies arginyl residues that are essential for anion binding and translocation. Phenylglyoxal reacts rapidly with the deprotonated form of the reactive groups. It is proposed that the effects of anions and of negatively charged transport inhibitors on the rate of irreversible binding of phenylglyoxal are related to the effects of the anions on a positive interfacial potential. This potential determines the local pH, and thereby the concentration of deprotonated groups, in an exofacial region of the anion transport protein.  相似文献   

12.
Transient exposure of human placental brush-border membrane vesicles to cholate reorients the ATP-driven H+ pump, enabling the pump to transport H+ into the vesicles upon addition of ATP to the external medium. H+ uptake can be measured in these vesicles by following the decrease in the absorbance of acridine orange, a delta pH indicator. We investigated the role of tyrosyl residues in the catalytic function of the H+ pump by studying the effects of tyrosyl group specific reagents on ATP-driven H+ uptake in cholate-pretreated membrane vesicles. The reagents tested were 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl), N-acetylimidazole, tetranitromethane, and p-nitrobenzenesulfonyl fluoride. Treatment of the membrane vesicles with these reagents resulted in the inhibition of the ATP-driven H+ uptake, and the inhibitory potency was in the following order: NBD-Cl greater than tetranitromethane greater than p-nitrobenzenesulfonyl fluoride greater than N-acetylimidazole. The inhibition of the H+ pump by NBD-Cl was reversible by 2-mercaptoethanol, and the inhibition by N-acetylimidazole was reversible by hydroxylamine. Since these reagents are not absolutely specific for tyrosyl groups and can also react with thiol groups, we studied the interaction of N-acetylimidazole with the H+ pump whose triol groups were masked by reaction with p-(chloromercuri)benzenesulfonate. The SH-masked pump was totally inactive, but the activity could be restored by dithiothreitol. On the contrary, the activity of the SH-masked H+ pump which was subsequently treated with N-acetylimidazole could not be restored by dithiothreitol, suggesting that thiol groups were not involved in the inhibition of the H+ pump by N-acetylimidazole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The water permeability of human red blood cells has been monitored by nuclear magnetic resonance (NMR) following exposure to inhibitors of various transport processes across their membranes. No significant inhibition of water diffusion could be detected after the treatment of red blood cells with the anion exchange transport inhibitor dihydro-4,4'-diisothiocyano-stilbene-2,2'-disulfonate (H2DIDS) or the glucose transport inhibitors diallyl-diethyl-stilbestrol (DADES), cytochalasin B, or 30 mM iodoacetamide. It is for the first time that the effects of glucose transport inhibitors has been studied in detail by the NMR approach. A special case proved to be phloretin, an inhibitor of anion, nonelectrolyte and glucose permeability. A small but statistically significant inhibition of water permeability (around 12% at 20 degrees C) was induced by exposure to 2 mM phloretin (for 60 min at 37 degrees C); after a pretreatment of cells with 12 mM N-ethylmaleimide (NEM), for 60 min at 37 degrees C, the degree of inhibition induced by phloretin increased (becoming 17% at 20 degrees C). None of the inhibitors prevented or potentiated the strong inhibitory effect on water diffusion of a mercurial, p-chloromercuribenzene sulfonate (PCMBS). No increase in the activation energy of water diffusion occurred by treatment with the reagents used (exception the effect of PCMBS). The present results clarify some conflicting reports concerning the effects on water permeability of inhibitors of various transport processes in red blood cells and indicate that in addition to the drastic inhibition induced by mercurials other reagents may also have inhibitory effects.  相似文献   

14.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

15.
The amino-acid residues of band 3 protein taking part in the ionic interaction with an anion-transport inhibitor, eosin 5-isothiocyanate (EITC), were determined by pH titration. The plots of the absorbance of EITC-ghost system against pH reveal five equilibria, at pH 3.7, 6.4, 8.0, 11.0 and 13.1. Since the three equilibria, 3.7, 8.0 and 11.0, are representative of the EITC molecule, the others, 6.4 and 13.1, may be due to the interaction of EITC molecules with histidine and arginine residues, respectively. The same experiment using a reconstituted system of band 3-lipid vesicles gave results in good agreement with the EITC-ghost system. The intensity of the induced CD band at 530 nm of EITC molecules bound to ghosts was decreased by preincubation with arginine-specific reagents, phenylglyoxal and 1,2-cyclohexanedione, or histidine-specific reagents, diethylpyrocarbonate (DEPC) and p-diazobenzene sulfonate. The repression effects by these chemical modifiers were evaluated by measuring the concentrations which elicit 50% reduction. The histidine-specific reagents repressed the CD of EITC more effectively than the arginine-specific reagents. Furthermore, it was found that DEPC effectively inhibited the sulfate efflux from intact erythrocytes. These results suggest that the histidine residues participate in the anion-transport system of human red cells.  相似文献   

16.
Sensitivity of the adipocyte D-glucose transport system in intact plasma membranes or following solubilization and reconstitution into phospholipid vesicles to several protein-modifying reagents was investigated. When intact plasma membranes were incubated with N-ethylmaleimide (20 mM) or fluorodinitrobenzene (4 mM), D-glucose transport activity was virtually abolished. However, washing the membranes free of unreacted reagents restored transport activity, indicating that covalent interaction with the membranes did not mediate the transport inhibition. Reaction of [3H] N-ethylmaleimide with plasma membranes under similar conditions resulted in extensive labeling of all protein fractions resolved on dodecyl sulfate gels. Similarly, addition of N-ethyl-maleimide to cholate-solubilized membrane protein had no effect on transport activity in artifical phospholipid vesicles reconstituted under conditions where the membrane protein was free of unreacted N-ethylmaleimide. Transport activity in plasma membranes was also inhibited by both reduced and oxidized dithiothreitol or glutathione (15 mM) in a readily reversible manner, consistent with a noncovalent mode of inhibition. Thus, the insulin-responsive adipocyte D-glucose transport system differs from the red cell hexose transport system in its remarkable insensitivity to modulation by covalent blockade of sulfhydryal or amino groups by the reagents studied.  相似文献   

17.
The Cu,Zn superoxide dismutases from bovine liver, yeast, Caulobacter crescentus, and Photobacter leiognathi were compared for their susceptibilities to inhibition by cyanide and to inactivation by hydrogen peroxide and phenylglyoxal. All of these enzymes were affected by these reagents, albeit with some differences in sensitivity. The yeast and the bacterial enzymes were thus more sensitive to cyanide than was the bovine enzyme, while the bovine and the yeast enzymes were inactivated more rapidly by hydrogen peroxide and less rapidly by phenylglyoxal than were their bacterial counterparts. The qualitative similarities in the behavior of all of these enzymes suggest overriding similarities in their active site regions. However, a quantitative comparison of the data suggests that the bacterial enzymes are more like each other than they are like the eucaryotic enzymes, and furthermore, are more like the yeast enzyme than the bovine enzyme.  相似文献   

18.
A high-affinity (Km = 2.7 x 10(-7) M) energy-requiring methionine-transport system has been characterized in RM 46 and RM 48, two different PAO methionine auxotrophs of Pseudomonas aeruginosa. After 8 s of transport 40--60% of the methionine label in the alcohol extract appears in S-adenosyl-L-methionine (SAM) with the remaining activity in free methionine. Methionine transport required a high degree of structural specificity for transport. Stimulation of transport occurred by addition of glucose or organic acids. The ability of a given substrate to stimulate transport was related to the type of carbon source used for growth. Transport was sensitive to sulfhydryl reagents and required oxidative phosphorylation, as indicated by the inhibitory effects of anaerobiosis, cyanide, and arsenate. The degree of inhibition by arsenate correlated with the level of ATP in the cell. Rapid transport in a SAM-deficient mutant (TM 1) and inhibition by arsenate of transport in this mutant suggested that SAM formation was not directly linked to transport and that ATP supplied energy for transport. Inhibition by arsenate was more severe in glucose- compared to citrate-stimulated cells. This result was also observed with proline transport indicating that this was not a peculiarity of the methionine-transport system. These data emphasize the close link between glucose metabolism, ATP levels, and transport. This ATP level is not so critical for transport in cells metabolizing citrate.  相似文献   

19.
Phenylglyoxal is found to be a potent inhibitor of sulfate equilibrium exchange across the red blood cell membrane at both pH 7.4 and 8.0. The inactivation exhibits pseudo-first-order kinetics with a reaction order close to one at both pH 7.4 and 8. The rate constant of inactivation at 37 degrees C was found to be 0.12 min-1 at pH 7.4 and 0.19 min-1 at pH 8.0. Saturation kinetics are observed if the pseudo-first order rate constant of inhibition is measured as a function of phenylglyoxal concentration. Sulfate ions as well as chloride ions markedly decrease the rate of inactivation by phenylglyoxal at pH 7.4, suggesting that the modification occurs at or near to the binding site for chloride and sulfate. The decrease of the rate of inactivation produced at pH 8.0 by chloride ions is much higher than that produced by sulfate ions. Kinetic analysis of the protection experiments showed that the loaded transport site is unable to react with phenylglyoxal. From the data it is concluded that the modified amino acid(s) residues, presumably arginine, is (are) important for the binding of the substrate anion.  相似文献   

20.
Phenylglyoxal and 2,3-butanedione rapidly inactivate membrane-bound or soluble bovine heart succinate dehydrogenase. The inhibition of the enzyme by these reagents is completely prevented by saturating concentration of malonate. The modification of the active site sulfhydryl group by p-chloromercuribenzoate decreases the rate of the enzyme inhibition by phenylglyoxal and abolishes the protective effect of malonate. Kinetic data suggest that the inactivation by phenylglyoxal results from the modification of an essential arginine residue(s) which interacts with dicarboxylate to form the primary enzyme-substrate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号