首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

2.
Synovial fluid from rheumatoid patients and normal cerebrospinal fluid contains micromolar concentrations of non-protein-bound iron salts that can promote lipid peroxidation and also the superoxide-dependent formation of hydroxyl radicals from hydrogen peroxide. These iron catalysts of oxygen radical reactions cannot be detected by conventional assays unless interfering high-molecular-weight substances, probably proteins, are removed by ultrafiltration or inactivated by exposure to low pH values. The bleomycin assay for ;catalytic' iron [Gutteridge, Rowley & Halliwell (1981) Biochem. J.199, 263-265] does not suffer from these artifacts.  相似文献   

3.
Antioxidant action of Mn2+ on radical-mediated lipid peroxidation without added iron in microsomal lipid liposomes and on iron-supported lipid peroxidation in phospholipid liposomes or in microsomes was investigated. High concentrations of Mn2+ above 50 microM inhibited 2,2'-azobis (2-amidinopropane) (ABAP)-supported lipid peroxidation without added iron at the early stage, while upon prolonged incubation, malondialdehyde production was rather enhanced as compared with the control in the absence of Mn2+. However, in a lipid-soluble radical initiator, 2,2'-azobis (2,4-dimethyl-valeronitrile) (AMVN)-supported lipid peroxidation of methyl linoleate in methanol Mn2+ apparently did not scavenge lipid radicals and lipid peroxyl radicals, contrary to a previous report. At concentrations lower than 5 microM, Mn2+ competitively inhibited Fe(2+)-pyrophosphate-supported lipid peroxidation in liposomes consisting of phosphatidylcholine with arachidonic acid at the beta-position and phosphatidylserine dipalmitoyl, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-supported lipid peroxidation in the presence of iron complex in microsomes. Iron reduction responsible for lipid peroxidation in microsomes was not influenced by Mn2+.  相似文献   

4.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

5.
N-substituted dehydroalanines react with and scavenge oxygen radicals. One of those compounds, the para-methoxyphenylacetyl dehydroalanine derivative, indexed as AD-5, inhibits the reduction of ferricytochrome c by superoxide anion (O2-.). It can also inhibit the oxidation of linolenic acid, another chemical process, which is mediated by hydroxyl radical (HO.). Furthermore, microsomal lipid peroxidation induced by iron salts was also inhibited by AD 5, but with a different degree of efficacy. In fact, lipid peroxidation initiated by a ferrous-oxygen complex (as in iron/NADPH-dependent peroxidation) was inhibited by AD 5 in a range of concentration of 2-4 mM. On the contrary, iron/NADPH-independent lipid peroxidation, where alkoxy radicals (RO.) have principally been involved, was inhibited in a range of concentration of 6-10 mM. The ESR studies by using the spin trapping agent DMPO, show that AD-5 reacts with HO. with a second order constant of 2.8 X 10(9)-4.5 X 10(9) M-1 s-1.  相似文献   

6.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

7.
Oxygen-dependent antagonism of lipid peroxidation   总被引:4,自引:0,他引:4  
Measurements of the rates for formation of conjugated dienes, malonylaldehyde, and lipid hydroperoxides show that increasing the concentration of O2 from 0.11 mM to 0.35 mM or 0.69 mM can slow the rate of linoleic acid peroxidation in a xanthine oxidase/hypoxanthine system. This effect is seen at pH 7.0 but not 7.4 and depends on the presence of monounsaturated fatty acids (oleic, cis, or trans vaccenic acid). Oxygen antagonism of ascorbic acid-iron-EDTA mediated lipid peroxidation is similarly dependent on fatty acid mixtures and occurs at pH 5.0 and 6.0 but not 7.0. The efficiency of initiation of peroxidation in the xanthine oxidase system is unaffected by monounsaturated fatty acids and O2 concentration. Increasing the O2 concentration increases the rate of superoxide radical production, but there is no change in salicylate hydroxylation (e.g., OH. production) or ferrous ion concentration. Oxygen-mediated slower rates of lipid peroxidation are associated with either increased H2O2 production or, based on an indirect assay, singlet O2 production. Increased O2 concentrations increase the rate of azobisisobutyronitrile-initiated lipid peroxidation as expected but addition of exogenous superoxide radicals slows the rate. Under similar conditions superoxide reacts with fatty acids to produce singlet O2. Overall, the data suggest that O2-mediated antagonism occurs because of termination reactions between hydroperoxyl (HO2.) and organic radicals, and singlet O2 or H2O2 are products of these reactions.  相似文献   

8.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

9.
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than α-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than α-tocopherol; (e) to be a weaker antiradical than α-tocopherol in the reduction of the stable radical DPPH·. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like α-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

10.
The mechanisms by which ferrous ion promoters induce malondialdehyde generation by human spermatozoa have been investigated in order to provide a rational basis for the quantification and interpretation of lipid peroxidation assays. Incubation of human spermatozoa with a ferrous ion promoter in the presence of thiobarbituric acid (TBA) led to the generation of the bone fide malondialdehyde-TBA adduct. The importance of iron in the stimulation of lipid peroxidation was emphasized by the ability of Desferal* and EDTA to suppress malondialdehyde generation. Paradoxically, when the concentration of EDTA relative to iron was equimolar or greater, the suppression of malondialdehyde formation was accompanied by the generation of hydroxyl radicals. These results suggested that the addition of promoter did not effect the first-chain initiation of lipid peroxidation but favored an alternative mechanism involving the catalytic decomposition of pre-existing lipid peroxides. This conclusion was reinforced by the inability of reagents that would limit the formation (superoxide dismutase and/or catalase) or availability (mannitol, formate) of hydroxyl radicals, to influence malondialdehyde generation. While hydroxyl radicals were not directly involved in Fe2+-promoted malondialdehyde generation, the existence of significant correlations between reactive oxygen species production and the outcome of the TBA assay, suggested that Fenton chemistry might be important in the initiation of peroxidative damage. It is proposed that the impeded propagation of peroxidation initiated by Fenton or Haber Weiss reactions would lead to the accumulation of lipid peroxides in the spermatozoa and it is these peroxides that are induced to decompose during the Fe2+-promoted TBA assay, stimulating a lipoperoxidative chain reaction and malondialdehyde formation. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

12.
The addition of 25μM hydrogen peroxide to 20μM metmyoglobin produces ferryl (FeIV = O) myoglobin. Optical spectroscopy shows that the ferryl species reaches a maximum concentration (60-70% of total haem) after 10 minutes and decays slowly (hours). Low temperature EPR spectroscopy of the high spin metmyoglobin (g = 6) signal is consistent with these findings. At this low peroxide concentration there is no evidence for iron release from the haem. At least two free radicals are detectable by EPR immediately after H2O2 addition, but decay completely after ten minutes. However, a longer-lived radical is observed at lower concentrations that is still present after 90 minutes. The monohydroxamate N-methylbutyro-hydroxamic acid (NMBH) increases the rate of decay of the fenyl species. In the presence of NMBH, none of the protein-bound free radicals are detectable; instead nitroxide radicals produced by oxidation of the hydroxamate group are observed. Similar results are observed with the trihydroxamate, desferoxamine. “Ferryl myoglobin” is still able to initiate lipid peroxidation even after the short-lived protein free radicals are no longer detectable (E.S.R. Newman, C.A. Rice-Evans and M.J. Davies (1991) Biochemical and Biophysical Research Communications 179, 1414-1419). It is suggested that the longer-lived protein radicals described here may be partly responsible for this effect. The mechanism of inhibition of initiation of lipid peroxidation by hydroxamate drugs, such as NMBH, may therefore be due to reduction of the protein-derived radicals, rather than reduction of ferryl haem.  相似文献   

13.
A novel histamine-containing peptidomimetic, L-glutamyl-histamine (L-Glu-Hist), has been synthesized and characterized as a possible cytokine mimic which might lead to cellular responses of improved specificity. The energy-minimized 3-D conformations of L-Glu-Hist derived from its chemical structure stabilize Fe2+-chelating complexes. L-Glu-Hist concentration-dependently accelerates a decrease in ferrous iron in ferrous sulfate solution and shows ferroxidase-like activity at concentrations less than 3 mM in the phenanthroline assay, whereas in the concentration range 3-20 mM it restricts the availability of Fe2+ to phenanthroline by chelation of iron ions. At low concentrations (less than or about 1 mM), L-Glu-Hist stimulates peroxidation of phosphatidylcholine in liposomes catalyzed by a superoxide anion radical (O2)-generating system (Fe2+ + ascorbate) and, at high concentrations (*10 mM), it suppresses lipid peroxidation (LPO) in liposomes. The stimulation of LPO by L-Glu-Hist is related to its ability at low concentrations (*0.05 mM) to release O2 free radicals as determined by the superoxide dismutase-inhibitable reduction of cytochrome c. The release of O2 by L-Glu-Hist might result from its ferroxidase-like activity, while its inhibition of LPO is due to chelation of Fe2+, prevention of the formation of free radicals, and degradation of lipid hydroperoxides at 5-20 mM L-Glu-Hist concentrations. L-Glu-Hist releases O2 at concentrations which stimulate [3H]thymidine incorporation into DNA and proliferation of mouse spleen lymphocytes and also of mononuclear cells from human blood. The induction of lymphocyte proliferation by L-Glu-Hist is dose-dependent in the 0.01-0.05 mM concentration range, although the maximal stimulation of LPO in the O2-dependent system is observed at higher L-Glu-Hist concentrations (*1 mM). Thus, low concentrations of oxygen free radicals released by L-Glu-Hist may provide a very fast, specific, and sensitive trigger for lymphocyte proliferation and immunoregulation.  相似文献   

14.
A number of xenobiotics are toxic because they rcdox cycle and generate free radicals. Interaction with iron, either to produce reactive species such as the hydroxyl radical, or to promote lipid peroxidation, is an important factor in this toxicity. A potential biological source of iron is ferritin. The cytotoxic pyrimidines, dialuric acid, divicine and isouramil, readily release iron from ferritin and promote ferritin-dependent lipid peroxidation. Superoxide dismutase and GSH, which maintain the pyrimidines in their reduced form, enhance both iron release and lipid peroxidation. Microsomes plus NADPH can reduce a number of iron complexes, although not ferritin. Reduction of Adriamycin. paraquat or various quinones to their radicals by the microsomes enhances reduction of the iron complexes, and in some cases, enables iron release from ferritin. Adriamycin stimulates iron-dependent lipid peroxidation of the microsomes. Ferritin can provide the iron, and peroxidation is most pronounced at low PO2. Compiexing agents that supress intraccllular iron reduction and lipid peroxidation may protect against the toxicity of Adriamycin.  相似文献   

15.
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.  相似文献   

16.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

17.
Oxidative modification of low-density lipoprotein (LDL) is a pivotal process in early atherogenesis and can be brought about by myeloperoxidase (MPO), which is capable of reacting with nitrite, a NO metabolite. We studied MPO-mediated formation of conjugated dienes in isolated human LDL in dependence on the concentrations of nitrite and chloride. This reaction was strongly stimulated by low concentrations (5-50 microM) of nitrite which corresponds to the reported concentration in the arterial vessel wall. Under these conditions no protein tyrosine nitration occurred; this reaction required much higher nitrite concentrations (100 microM-1 mM). Chloride neither supported lipid peroxidation alone nor was its presence mandatory for the effect of nitrite. We propose a prominent role of lipid peroxidation for the proatherogenic action of the MPO/nitrite system, whereas peroxynitrite may be competent for protein tyrosine nitration of LDL. Monomeric and oligomeric flavan-3-ols present in cocoa products effectively counteracted, at micromolar concentrations, the MPO/nitrite-mediated lipid peroxidation of LDL. Flavan-3-ols also suppressed protein tyrosine nitration induced by MPO/nitrite or peroxynitrite as well as Cu2+-mediated lipid peroxidation of LDL. This multi-site protection by (-)-epicatechin or other flavan-3-ols against proatherogenic modification of LDL may contribute to the purported beneficial effects of dietary flavan-3-ols for the cardiovascular system.  相似文献   

18.
The aim of this study was to determine whether alpha-tocopherol and zeaxanthin offer synergistic protection against photosensitized lipid peroxidation mediated by singlet oxygen and free radicals. The antioxidant action of zeaxanthin and alpha-tocopherol was studied in liposomes made of phosphatidylcholine and cholesterol. Progress of lipid peroxidation, induced by aerobic photoexcitation of rose bengal, was monitored by the detection of lipid hydroperoxides and by electron spin resonance oximetry. In addition, cholesterol was employed as a mechanistic reporter molecule, which forms characteristic products of the interaction with singlet oxygen or free radicals. Cholesterol hydroperoxides were quantitatively determined by HPLC/electrochemical detection. HPLC/ultraviolet-visible (UV-VIS) absorption detection was used to measure concentrations of zeaxanthin and alpha-tocopherol. Zeaxanthin, even at concentrations of 2.5 microM, effectively protected against singlet oxygen-mediated lipid peroxidation but was rapidly consumed due to interaction with free radicals. alpha-Tocopherol alone was not effective in protecting against lipid peroxidation, even at concentration of 0.1 mM. Combinations of zeaxanthin and alpha-tocopherol exerted a synergistic protection against lipid peroxidation. The synergistic effect may be explained in terms of prevention of carotenoid consumption by effective scavenging of free radicals by alpha-tocopherol therefore allowing zeaxanthing to quench the primary oxidant-singlet oxygen effectively.  相似文献   

19.
It has been reported that glutamate decreased the intracellular glutathione (GSH) concentration and thereby induced cell death in C6 rat glioma cells. Polyunsaturated fatty acids such as arachidonic acid, gamma-linolenic acid, and linoleic acid enhanced lipid peroxidation promoting 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation under the glutamate-induced GSH-depletion. The enhancement of lipid peroxidation by polyunsaturated fatty acids was species-dependent. Some antioxidants capable of scavenging oxygen and lipid radicals and some iron or copper scavengers inhibited both the lipid peroxidation and the 8-OH-dG formation, consequently protecting against cell death induced by glutamate-induced GSH depletion. These results suggest that GSH depletion caused by glutamate induces lipid peroxidation and consequently 8-OH-dG formation and that polyunsaturated fatty acids enhance lipid peroxidation associated with mediated 8-OH-dG formation through a chain reaction.  相似文献   

20.
The hydroxyl radical ('OH) is one of the roost reactive mdieales known to chemistry and is believed to be a major active free radicle responsible for modifications of macmmolecules and cellular damage. Two lines of evidence strongly indicate that 'OH radicals are generated in a Fenton-type Haber-Weiss reactions in plants subjected to water stress. Firstly, water stress causes an increase in the concentration of catalytic metals, which are critical for Fenton-like reactions to proceed in vivo. Furthermore, subrmillimolar concentrations of H2O2 and ascorbic acid(or O2- ) in the drought-stressed plants are large enough to support the Fentontype Haber-Weiss reactions. Secondly, there is oxidation of proteins and lipids in the drought-stressed plants; a process that requires a catalytic metal and that, at least for protein oxidation, is mediated by the 'OH radicals. Protein oxidation is thought to involve binding of metal ions to the proteins and subsequent site-specific attack by the 'OH radicals arising from the roetal-catalysed decomposition of H2O2. It has been proposed that protein oxidation may be a better index than lipid peroxidation because the latter fields many different products and these only appear after a lag period. The validity of malondialdehyde (MDA), an early product of lipid peroxidation, as an index of lipid peroxidation has been argued by the non-specific method of its measurement. The 'OH radicals are not the only necessary initiator for lipid peroxidation and lipid peroxidation is not usually involved in plants exposed to water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号