首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identified neurons and glial cells in a parasympathetic ganglion were observed in situ with video-enhanced microscopy at intervals of up to 130 d in adult mice. Whereas the number and position of glial cells associated with particular neurons did not change over several hours, progressive differences were evident over intervals of weeks to months. These changes involved differences in the location of glial nuclei on the neuronal surface, differences in the apparent number of glial nuclei associated with each neuron, and often both. When we examined the arrangement of neurons and glial cells in the electron microscope, we also found that presynaptic nerve terminals are more prevalent in the vicinity of glial nuclei than elsewhere on the neuronal surface. The fact that glial nuclei are associated with preganglionic endings, together with the finding that the position and number of glial nuclei associated with identified neurons gradually changes, is in accord with the recent observation that synapses on these neurons are normally subject to ongoing rearrangement (Purves, D., J. T. Voyvodic, L. Magrassi, and H. Yawo. 1987. Science (Wash. DC). 238:1122-1126). By the same token, the present results suggest that glial cells are involved in synaptic remodeling.  相似文献   

2.
The cytology and synaptic organization of the insular trigeminal-cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

3.
An electron-microscopic study was made of the normal structure of the medial part of the ventral horn (Rexed's laminae VII and VIII) in the cervical portion of the cat's spinal cord, the region where fibers of reticulospinal and vestibulospinal tracts terminate. Neurons of this region can be divided on the basis of the density of their cytoplasmic matrix into "light" and "dark," the dark being much more numerous in this area (26% of the total number counted) than in other parts of the gray matter of the spinal cord. The mean diameter of the soma of the dark cells is smaller than that of the light cells, and it usually is 15–20 µ. Dendrites of the neurons can also be subdivided into "light" and "dark" respectively. The surface of the former is comparatively simple in shape with a small number of appendages and spine-like structures. On the surface of the dark dendrites there are many projections and irregularly shaped lacunae. The glial cells and their processes often completely cover the surface of the soma of the small neurons, and synaptic endings are found on it only where the dendrites leave the soma. Analysis of 1000 randomly chosen synaptic endings showed that 76.1% of them form axo-dendritic synapses, 14.2% axo-somatic, and 9.7% axo-axonal synapses. Of the total number of endings 50.9% contain spherical and 40.9% flattened synaptic vesicles. Some synaptic endings contain special structures under the postsynaptic membrane and have osmiophilic synaptic vesicles. The possible functional role of the pattern of neuronal organization revealed in this region is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 176–183, March–April, 1972.  相似文献   

4.
The immunocytochemical localization of nicotinic acetylcholine receptors in the chick ciliary ganglion was investigated at the ultrastructural level with a procedure utilizing binding of α-bungarotoxin visualized by immunoperoxidase histology. Both ganglionic cell populations, i.e. the ciliary and choroid neurons, showed specific immunoreactivity for receptors. In both types of neurons evident stain was found on the postsynaptic membrane. Often the reaction product filled discrete regions of the synaptic cleft. Furthermore, specific staining was also observed on large areas of the neuronal surface devoid of presynaptic nerve endings. These data probably indicate the occurrence of both synaptic and extrasynaptic nicotinic receptors on the neuronal plasma membrane. Immunoreactivity was also observed on the membrane of the presynaptic nerve endings, and on the part of the satellite plasma membrane which is adjacent to the neuron. These last results are discussed in relation to the occurrence of possible artifacts or, alternatively, to the presence of presynaptic and glial receptors. Immunoreactivity at all sites was prevented almost completely by ganglion incubation in 1 mM d-tubocurarine prior to and during treatment with toxin.  相似文献   

5.
The cytology and synaptic organization of the insular trigeminal—cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

6.
Z N Zhuravleva 《Ontogenez》1987,18(6):631-638
Embryonic septum of hippocampus was grafted into the anterior eye chamber (AEC) of adult recipient rats. The fine structure and distribution of synaptic endings were studied in the hippocampus (HC) and septum (ST) grafts developing in oculo for 3-4 months. On the basis of the structure of postsynaptic regions, asymmetrical and symmetrical synapses are distinguished, whose distribution on the body and dendrites of hippocampal and septal neurons is basically similar with that in situ. As in vivo, axo-somatic, axo-dendrite and axo-spine forms of synaptic endings have been observed. Neuropile has, basically, normal structure, judging by the ratio of nerve and glial elements, but sometimes dendro-dendrite contacts and glomerular-like synaptic structures are observed which are not characteristic of the studied brain regions. Besides, the grafts contain an increased number of serial and tangential synapses, as well as axonal terminals with the signs of growth cones. The observed structural deviations appear to be due to incomplete tissue maturation in the absence of normal afferentation.  相似文献   

7.
近年来,对胶质细胞功能的研究迅速发展.诸多研究都表明胶质细胞不仅为神经元功能发挥提供良好环境,而且还直接影响突触形成及其功能完善.此外胶质细胞也可以通过自身释放化学递质与神经元形成突触联系,参与对神经元兴奋性及突触传导的调节.  相似文献   

8.
9.
Summary Scanning electron microscopy and cryofracture technique were applied to study neuronal architecture and synaptic connections of the human cerebellum. Samples were processed according to the technique of Humphreys et al. (1975) with minor modifications. The granule cells exhibit unbranched filiform axons and coniform dendritic processes. The latter show typical claw-like endings making gearing type synaptic contacts with mossy fiber rosettes. The unattached mossy rosettes appear as solid club-like structures. Some fractographs show individual granule cells, Golgi neurons and glomerular islands. The climbing fibers and their Scheibel's collaterals were also characterized. In the Purkinje layer the surface fracture was produced at the level of the Bergmann glial cells, which are selectively removed, allowing us to visualize the rough surface of Purkinje cells and the supra- and infraganglionic plexuses of basket cell axons which appeared as entangled threads. In the molecular layer the three-dimensional configuration of the Purkinje secondary and tertiary dendritic branches was obtained. The filiform parallel fibers make cruciform synaptic contacts with the Purkinje dendritic spines. The appearance of stellate neuronal somata closely resembled that of the granule cells. The subpial terminals of Bergmann fibers appeared attached to the exterior of the folia forming the rough surfaced external glial limiting membrane.  相似文献   

10.
—Bulk prepared neuronal perikarya, nerve endings and glial cells have been used to study amino acid concentrations and GABA metabolism in vitro. All amino acids were more concentrated in synaptosomes and glial cells than in neuronal perikarya. Cell specificity was found with respect to the relative distribution of some amino acids. Glutamate decarboxylase activity was considerably higher in synaptosomes than in glial cells. The inhibitory effect of amino-oxyacetic acid on glutamate decarboxylase activity differed between synaptosomes and glial cells. γ-Aminobutyric acid-α-ketoglutarate transaminase had the highest activity in the glial cell fraction; the inhibition of amino-oxyacetic acid differed between glial and neuronal material. The metabolism of exogenous GABA just accumulated by a cell showed similar time characteristics in neuronal and glial material.  相似文献   

11.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

12.
The distribution of serotonin (5-HT) was determined by the application of the prembedding peroxidase-anti-peroxidase (PAP) technique in vibratome and ultrathin sections of the brain stem. The antiserum stained the neuronal groups B1 to B9. Somata, dendrites and axons of multipolar and bipolar neurons were recognized in the usual locations. The most commonly found profiles in the area of the n.raphe dorsalis were dendrites. The search for axon terminals was unsuccesful. The labeled dendrites appear in synaptic contact with unlabeled endings containing round or pleomorphic vesicles, and occasionally some large dense core vesicles. Contacts between two labeled dendrites or processes were not found. Occasionally a dendrodendritic junction between a 5-HT labeled dendrite and an unlabeled dendrite has been found. There are areas of the dendritic membrane free of synaptic junctions and free of glial insulation. Results are discussed in relation with the previously proposed presynaptic role of the dendrites in the neuronal circuitry of then. raphé dorsalis.Special Issue dedicated to Prof. Eduardo De Robertis.Research supported by grants from the CONICET and SECYT, Argentina.  相似文献   

13.
Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ), we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.  相似文献   

14.
In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron-neuron and neuron-glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function.  相似文献   

15.
Neurons, including their synapses, are generally ensheathed by fine processes of astrocytes, but this glial coverage can be altered under different physiological conditions that modify neuronal activity. Changes in synaptic connectivity accompany astrocytic transformations so that an increased number of synapses are associated with reduced astrocytic coverage of postsynaptic elements, whereas synaptic numbers are reduced on reestablishment of glial coverage. A system that exemplifies activity-dependent structural synaptic plasticity in the adult brain is the hypothalamo-neurohypophysial system, and in particular, its oxytocin component. Under strong, prolonged activation (parturition, lactation, chronic dehydration), extensive portions of somatic and dendritic surfaces of magnocellular oxytocin neurons are freed of intervening astrocytic processes and become directly juxtaposed. Concurrently, they are contacted by an increased number of inhibitory and excitatory synapses. Once stimulation is over, astrocytic processes again cover oxytocinergic surfaces and synaptic numbers return to baseline levels. Such observations indicate that glial ensheathment of neurons is of consequence to neuronal function, not only directly, for example by modifying synaptic transmission, but indirectly as well, by preparing neuronal surfaces for synapse turnover.  相似文献   

16.
Bidirectional signaling between neurons and glial cells has been demonstrated in brain slices and is believed to mediate glial modulation of synaptic transmission in the CNS. Our laboratory has characterized similar neuron-glia signaling in the mammalian retina. We find that light-evoked neuronal activity elicits Ca(2+) increases in Müller cells, which are specialized retinal glial cells. Neuron to glia signaling is likely mediated by the release of ATP from neurons and is potentiated by adenosine. Glia to neuron signaling has also been observed and is mediated by several mechanisms. Stimulation of glial cells can result in either facilitation or depression of synaptic transmission. Release of D-serine from Müller cells might also potentiate NMDA receptor transmission. Müller cells directly inhibit ganglion cells by releasing ATP, which, following hydrolysis to adenosine, activates neuronal A(1) receptors. The existence of bidirectional signaling mechanisms indicates that glial cells participate in information processing in the retina.  相似文献   

17.
An electron microscope study of goldfish Mauthner cells is reported.1 The cell is covered by a synaptic bed ~ 5 µ thick containing unusual amounts of extracellular matrix material in which synapses and clear glia processes are implanted. The preterminal synaptic neurites are closely invested by an interwoven layer of filament-containing satellite cell processes. The axoplasm of the club endings contains oriented mitochondria, neurofilaments, neurotubules, and relatively few synaptic vesicles. That of the boutons terminaux contains many unoriented mitochondria and is packed with synaptic vesicles and some glycogen but no neurofilaments or neurotubules. The bare axons of club endings are surrounded by a moderately abundant layer of matrix material. The synaptic membrane complex (SMC) in cross-section shows segments of closure of the synaptic cleft ~ 0.2 to 0.5 µ long. These alternate with desmosome-like regions of about the same length in which the gap widens to ~ 150 A and contains a condensed central stratum of dense material. Here, there are also accumulations of dense material in pre- and postsynaptic neuroplasm. The boutons show no such differentiation and the extracellular matrix is largely excluded around them. The axon cap is a dense neuropil of interwoven neural and glial elements free of myelin. It is covered by a closely packed layer of glia cells. The findings are interpreted as suggestive of electrical transmission in the club endings.  相似文献   

18.
The synaptic terminals' withdrawal from the somata and proximal dendrites of injured motoneuron by the processes of glial cells following facial nerve axotomy has been the subject of research for many years. This phenomenon is referred to as synaptic stripping, which is assumed to help survival and regeneration of neurons via reduction of synaptic inputs. Because there is no disruption of the blood-brain barrier or infiltration of macrophages, the axotomy paradigm has the advantage of being able to selectively investigate the roles of resident glial cells in the brain. Although there have been numerous studies of synaptic stripping, the detailed mechanisms are still under debate. Here we suggest that the species and strain differences that are often present in previous work might be related to the current controversies of axotomy studies. For instance, the survival ratios of axotomized neurons were generally found to be higher in rats than in mice. However, some studies have used the axotomy paradigm to follow the glial reactions and did not assess variations in neuronal viability. In the first part of this article, we summarize and discuss the current knowledge on species and strain differences in neuronal survival, glial augmentation and synaptic stripping. In the second part, we focus on our recent findings, which show the differential involvement of microglia and astrocytes in synaptic stripping and neuronal survival. This article suggests that the comparative study of the axotomy paradigm across various species and strains may provide many important and unexpected discoveries on the multifaceted roles of microglia and astrocytes in injury and repair.  相似文献   

19.
Summary Structures identified as subsurface cisterns (SSC's) were found in neurons of the paraventricular nuclei of the rat hypothalamus. They appeared as cytoplasmic organelles consisting most often of stacks of parallel cisterns apposed to the neuronal plasmalemma. These SSC's were located in the interneurons of the parvocellular system, but not in neurosecretory cells and glial cells. SSC's were seen at zones of cytoplasm apposed to neuronal or glial cell processes, showing in some instances specific relationships with synaptic areas.The morphological features of these SSC's are described, and their possible functional significance is briefly discussed.  相似文献   

20.
The ultrastructure of synaptic endings of the neurosecretory cells of the nucleus preopticus was examined in adult Cyprinus carpio L. Two of synpatic endings occur: type I--small agranular vesicles and large granular vesicles, type II--only agranular vesicles. The functioning of the nucleus preopticus neurosecretory cells in Cyprinus carpio L is presumably controlled by the synpatic endings of the adrenergic (synaptic endings of type I) as well as of the cholinergic (synaptic endings of type II) origin. By visual and morphometric methods different kinds of synpatic endings are distinguished among both the types of synapses according to their particular functional states. A quantitative analysis of the correlation of these kinds of synpatic endings allows a suggestion in respect to the state of the synaptic apparatus on the perikaria of neurosecretory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号