首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies suggest that l-3,4 dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a severe complication of conventional L-DOPA therapy of Parkinson's disease, may be caused by dopamine (DA) release originating in serotonergic neurons. To evaluate the in vivo effect of a 5-HT(1A) agonist [(±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide, 8-OHDPAT] on the L-DOPA-induced increase in extracellular DA and decrease in [(11) C]raclopride binding in an animal model of advanced Parkinson's disease and LID, we measured extracellular DA in response to L-DOPA or a combination of L-DOPA and the 5-HT(1A) agonist, 8-OHDPAT, with microdialysis, and determined [(11) C]raclopride binding to DA receptors, with micro-positron emission tomography, as the surrogate marker of DA release. Rats with unilateral 6-hydroxydopamine lesions had micro-positron emission tomography scans with [(11) C]raclopride at baseline and after two pharmacological challenges with L-DOPA?+?benserazide with or without 8-OHDPAT co-treatment. Identical challenge regimens were used with the subsequent microdialysis concomitant with ratings of LID severity. The baseline increase of [(11) C]raclopride-binding potential (BP(ND) ) in lesioned striatum was eliminated by the L-DOPA challenge, while the concurrent administration of 8-OHDPAT prevented this L-DOPA-induced displacement of [(11) C]raclopride significantly in lesioned ventral striatum and near significantly in the dorsal striatum. With microdialysis, the L-DOPA challenge raised the extracellular DA in parallel with the emergence of strong LID. Co-treatment with 8-OHDPAT significantly attenuated the release of extracellular DA and LID. The 8-OHDPAT co-treatment reversed the L-DOPA-induced decrease of [(11) C]raclopride binding and increase of extracellular DA and reduced the severity of LID. The reversal of the effect of L-DOPA on [(11) C]raclopride binding, extracellular DA and LID by 5-HT agonist administration is consistent with the notion that part of the DA increase associated with LID originates in serotonergic neurons.  相似文献   

2.
Decreased Ferritin Levels in Brain in Parkinson''s Disease   总被引:5,自引:2,他引:3  
Ferritin levels were measured in postmortem brain tissue from patients dying with Parkinson's disease [treated with L-3,4-dihydroxyphenylalanine (L-DOPA)] and from control patients. Ferritin levels were decreased in the substantia nigra, caudate-putamen, globus pallidus, cerebral cortex, and cerebellum when compared with age-matched control tissues. However, in CSF from L-DOPA-treated patients and in serum from L-DOPA-treated and untreated parkinsonian patients, ferritin levels were normal. Previous studies have suggested an increased total iron content in substantia nigra of parkinsonian brain. The failure of substantia nigra ferritin formation to be stimulated by increased iron levels suggests some defect in iron handling in this critical brain region in Parkinson's disease. The reason for decreased ferritin levels throughout the parkinsonian brain is not clear but does not seem to reflect a general system deficit in ferritin.  相似文献   

3.
Numerous studies have shown that endogenous and/or environmental neurotoxins and oxidative stress may participate in the pathogenesis of Parkinson's disease (PD), but the detailed mechanisms are still unclear. While dopamine (DA) replacement therapy with L-DOPA (levodopa) improves PD symptoms, it does not inhibit the degeneration of DA neurons in the substantia nigra. Recently, bromocriptine, pramipexole and several other agonists of the dopamine D2-receptor subfamily (including D2, D3 and D4-subtypes) have been shown to have neuroprotective effects in parkinsonian models in vitro and in vivo. Their neuroprotective effects may be mediated directly and/or indirectly by antioxidant effects, mitochondrial stabilization or induction of the antiapoptotic Bcl-2 family.  相似文献   

4.
A primate model of Parkinson's disease was obtained by i. v. administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). A behavioural, a mechanographic and an electromyographic (EMG) study were carried out during the execution of a rapid elbow movement, in two normal monkeys and, after the MPTP administration, before and after a L-DOPA therapy. Disturbances in behavior, movement parameters and EMG activity observed in MPTP-treated monkeys mimic those reported in Parkinsonian patients. Treatment with L-DOPA was effective in greatly correcting these disturbances. These results lend weight to the assumption that use of MPTP in primate provides a good model to study Parkinson's disease.  相似文献   

5.
The biochemical modifications which occur in the dopaminergic system after chronic administration of L-DOPA are investigated. Levels of DA and of its metabolite 3-methoxytyramine (3-MT), an expression of the amount of DA released, were raised to the same extent in controls given a single dose of 1-DOPA and in chronically treated rats given 100 mg/kg of 1-DOPA plus 25 mg/kg of benserazide twice a day for 24 days. However, the reduction in neuronal function expressed by the decrease in 3-MT which follows treatment with DA agonists such as piribedil and apomorphine was less pronounced in the chronically L-DOPA treated rats. This suggests that such treatment causes a down regulation of DA receptors. These in vivo results were confirmed by in vitro analysis of DA receptor activity after chronic L-DOPA. Under these conditions there was a significant reduction in the number of [3H]-spiperone and [3H]-ADTN binding sites with no changes in their affinity. The in vivo and in vitro findings both suggest the involvement of a subsensitive compensatory mechanism or down regulation of dopaminergic neurons after chronic treatment with L-DOPA.  相似文献   

6.
Recent results have suggested that some products of mercapturic acid pathway (MAP) metabolism of oxidized dopamine (DA) may contribute to mesostriatal dopaminergic neurodegeneration, and that at least one product, 5-S-cysteinyldopamine (Cys-DA), is elevated in patients with advanced Parkinson's disease (PD) who have been treated with L-DOPA. Here we investigated MAP enzymes and products in the midbrain and striatum of control individuals and patients with dementia with Lewy bodies (DLB) who had less severe dopaminergic degeneration than PD patients and who were not treated with L-DOPA. We also determined the biological activity of MAP metabolites of oxidized DA using primary rat mesencephalic cultures, rat cerebral synaptosomes, and rat striatum in vivo microdialysis. Our results showed that the human mesostriatal dopaminergic pathway generates Cys-DA but has limited enzymatic capacity for mercapturate formation, that striatal levels of MAP products of oxidized DA are not elevated in DLB patients compared with controls, and that Cys-DA interferes with trafficking of DA in vitro and in vivo. These results indicate that while Cys-DA is not increased in striatum of patients with mild dopaminergic neurodegeneration, it may interfere with uptake of DA in patients with advanced PD.  相似文献   

7.
The involvement of the pedunculopontine nucleus (PPN) and the adjacent cuneiform nucleus (CuN), known as the mesencephalic locomotor area, in the pathophysiology of parkinsonian symptoms is receiving increasing attention. Taking into account the role of dopamine (DA) in motor control and its degeneration in Parkinson's disease, this neurotransmitter could induce dysfunction in the PPN and CuN through a direct dopaminergic innervation of these brainstem structures. This study provides the first demonstration that the PPN and CuN are innervated by dopamine transporter-bearing fibres in normal monkeys, which points to a novel dopaminergic system that targets the lower brainstem. Intoxication with MPTP induced a significant loss of dopamine transporter-positive fibres in the PPN and CuN of young (3–5 years old) acutely or chronically intoxicated monkeys compared with control animals. The more severe DA depletion found after chronic intoxication may explain, at least in part, deficits that appear late in the evolution of Parkinson's disease. A drastic loss of DA fibres was also observed in aged acutely intoxicated monkeys (about 30 years old) suggesting that age- and disease-related loss of dopaminergic fibres might be responsible for symptoms, such as gait disorders, that are more severe in elderly parkinsonian patients.  相似文献   

8.
Dopamine (DA) quinone as DA neuron-specific oxidative stress conjugates with cysteine residues in functional proteins to form quinoproteins. Here, we examined the effects of cysteine-rich metal-binding proteins, metallothionein (MT)-1 and -2, on DA quinone-induced neurotoxicity. MT quenched DA semiquinones in vitro. In dopaminergic cells, DA exposure increased quinoproteins and decreased cell viability; these were ameliorated by pretreatment with MT-inducer zinc. Repeated L-DOPA administration markedly elevated striatal quinoprotein levels and reduced the DA nerve terminals specifically on the lesioned side in MT-knockout parkinsonian mice, but not in wild-type mice. Our results suggested that intrinsic MT protects against L-DOPA-induced DA quinone neurotoxicity in parkinsonian mice by its quinone-quenching property.  相似文献   

9.
Antisera were raised against L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine (DA), noradrenaline (NA), and octopamine (OA). This was achieved by coupling each molecule to bovine serum albumin or human serum albumin using glutaraldehyde. The conjugated aromatic amines were kept in a reducing medium containing sodium metabisulfite. Antiserum specificity was tested using an enzyme-linked immunosorbent assay method for catecholamines. Competition experiments were done between the immunogen coated on the well plates and each catecholamine, either in the free state or in conjugated form, previously incubated with an antiserum. In each case, the nonconjugated compound was poorly recognized. The nonreduced conjugates of L-DOPA and DA were well recognized, whereas those of NA and OA were poorly immunoreactive. The cross-reactivity ratios established in the competition experiments allowed the specificity of the immune response to be defined. In each case, it was found to be high. The results suggest that the antibodies of L-DOPA and DA antisera recognize preferentially the catechol moiety, whereas for the anti-NA and anti-OA antibodies, the lateral chain is important.  相似文献   

10.
The crucial role of dopamine (DA) in movement control is illustrated by the spectrum of motor disorders caused by either a deficiency or a hyperactivity of dopaminergic transmission in the basal ganglia. The degeneration of nigrostriatal DA neurons in Parkinson's disease causes poverty and slowness of movement. These symptoms are greatly improved by pharmacological DA replacement with L-3,4-dihydroxy-phenylalanine (L-DOPA), which however causes excessive involuntary movements in a majority of patients. L-DOPA-induced dyskinesia (abnormal involuntary movements) provides a topic of investigation at the interface between clinical and basic neuroscience. In this article, we review recent studies in rodent models, which have uncovered two principal alterations at the basis of the movement disorder, namely, an abnormal pre-synaptic handling of exogenous L-DOPA, and a hyper-reactive post-synaptic response to DA. Dysregulated nigrostriatal DA transmission causes secondary alterations in a variety of non-dopaminergic transmitter systems, the manipulation of which modulates dyskinesia through mechanisms that are presently unclear. Further research on L-DOPA-induced dyskinesia will contribute to a deeper understanding of the functional interplay between neurotransmitters and neuromodulators in the motor circuits of the basal ganglia.  相似文献   

11.
We have previously reported the presence, in human midbrain, of an enzymatic activity which catalyzes the formation of dopaminochrome from dopamine (DA) and hydrogen peroxide. Here, we report, for the first time, an increased DA peroxidizing activity in the midbrain and basal ganglia of autoptic Parkinsonian brains. The crude activity was determined spectrophotometrically in extracts of paraffin-embedded slices obtained from autopsied brain. No addition of substrate was necessary since endogenous substrates such as DA and hydrogen peroxide were present in the samples. In Parkinson's patients' midbrain, this activity was substantially increased compared to normal midbrain. Moreover, the DA peroxidizing activity, which was absent in basal ganglia of normal people, was detectable in all our Parkinson's patients. These observations suggest that a peroxidizing pathway of DA may be present in human brain. The increased peroxidizing activity in Parkinson's patients generates the toxic compound dopaminochrome which may play a role in the pathogenesis of this disease.  相似文献   

12.
The binding of adrenergic ligands (3H-prazosin, 3H-clonidine, 3H-dihydroalprenolol) was studied on a preparation of cerebral microvessels in the prefrontal cortex and putamen of control and Parkinsonian subjects. The adrenergic receptor density in microvessels of control patients was less than 0.5% and 3.3% respectively of the total binding. A significant decrease in the number of alpha-1 binding sites was observed on microvessels in the putamen of patients with Parkinson's disease.  相似文献   

13.
L-DOPA is therapeutically efficacious in patients with Parkinson’s disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, DA and DAT in striatal astrocytes of hemi-parkinsonian model rats after repeated L-DOPA administration, and measured the contents of L-DOPA, DA and their metabolite in primary cultured striatal astrocytes after L-DOPA/DA treatment. Repeated injections of L-DOPA induced apparent L-DOPA- and DA-immunoreactivities and marked expression of DAT in reactive astrocytes on the lesioned side of the striatum in hemi-parkinsonian rats. Exposure to DA for 4h significantly increased the levels of DA and its metabolite DOPAC in cultured striatal astrocytes. L-DOPA was also markedly increased in cultured striatal astrocytes after 4-h L-DOPA exposure, but DA was not detected 4 or 8h after L-DOPA treatment, despite the expression of aromatic amino acid decarboxylase in astrocytes. Furthermore, the intracellular level of L-DOPA in cultured striatal astrocytes decreased rapidly after removal of extracellular L-DOPA. The results suggest that DA uptaken into striatal astrocytes is rapidly metabolized and that striatal astrocytes act as a reservoir of L-DOPA that govern the uptake or release of L-DOPA depending on extracellular L-DOPA concentration, but are less capable of converting L-DOPA to DA.  相似文献   

14.
We explored possible differences in the peripheral and central pharmacokinetics of L-DOPA as a basis for individual variation in the liability to dyskinesia. Unilaterally, 6-hydroxydopamine (6-OHDA) lesioned rats were treated chronically with L-DOPA for an induction and monitoring of abnormal involuntary movements (AIMs). Comparisons between dyskinetic and non-dyskinetic cases were then carried out with regard to plasma and striatal L-DOPA concentrations, tissue levels of dopamine (DA), DA metabolites, and serotonin. After a single intraperitoneal injection of L-DOPA, plasma L-DOPA concentrations did not differ between dyskinetic and non-dyskinetic animals, whereas peak levels of L-DOPA in the striatal extracellular fluid were about fivefold larger in the former compared with the latter group. Interestingly, the time course of the AIMs paralleled the surge in striatal L-DOPA levels. Intrastriatal infusion of L-DOPA by reverse dialysis concentration dependently induced AIMs in all 6-OHDA lesioned rats, regardless of a previous priming for dyskinesia. Steady-state levels of DA and its metabolites in striatal and cortical tissue did not differ between dyskinetic and non-dyskinetic animals, indicating that the observed difference in motor response to L-DOPA did not depend on the extent of lesion-induced DA depletion. These results show that an elevation of L-DOPA levels in the striatal extracellular fluid is necessary and sufficient for the occurrence of dyskinesia. Individual differences in the central bioavailability of L-DOPA may provide a clue to the varying susceptibility to dyskinesia in Parkinson's disease.  相似文献   

15.
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson''s disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.  相似文献   

16.
Total muscarinic receptor levels, the levels of the subtypes exhibiting high and low affinity for pirenzepine, and the high- and low-affinity agonist states of the receptor were investigated in hippocampal tissue obtained at autopsy from mentally normal individuals and the following pathological groups: Alzheimer's disease, Parkinson's disease, Down's syndrome, alcoholic dementia, Huntington's chorea, and motor-neurone disease. A moderate decrease in the density of both high-affinity pirenzepine and high-affinity agonist subtypes was found in Alzheimer's disease, whereas a trend towards an increase in the overall muscarinic receptor density was apparent in the parkinsonian patients without dementia, mainly due to an increase in the low-affinity agonist state; the differences between the Alzheimer's disease and nondemented parkinsonian cases were highly significant. As previously reported, the levels of both choline acetyltransferase and acetylcholinesterase were markedly reduced in both Alzheimer's disease and Parkinson's disease--with a greater loss of both enzymes in the demented subgroup of parkinsonian patients. Activities of the cholinergic enzymes were also extensively reduced in Down's syndrome, accompanied by a loss of high-affinity pirenzepine binding. There were no significant receptor or enzyme alterations in the other groups studied. These observations suggest that in the human brain, extensive degeneration of cholinergic axons to the hippocampus, as indicated by a loss of cholinergic enzymes, is not necessarily accompanied by extensive muscarinic receptor abnormalities (as might be expected if a major subpopulation were presynaptic). Moreover, the opposite changes in muscarinic binding in Parkinson's and Alzheimer's diseases may be related to the greater severity of dementia in the latter disease.  相似文献   

17.
Riluzole is neuroprotective in patients with amyotrophic lateral sclerosis and may also protect dopamine (DA) neurons in Parkinson's disease. We examined the neuroprotective potential of riluzole on DA neurons using primary rat mesencephalic cultures and human dopaminergic neuroblastoma SH-SY5Y cells. Riluzole (up to 10 microM:) alone affected neither the survival of DA neurons in primary cultures nor the growth of SH-SY5Y cells after up to 72 h. Riluzole (1-10 microM:) dose-dependently reduced DA cell loss caused by exposure to MPP(+) in both types of cultures. These protective effects were accompanied by a dose-dependent decrease of intracellular ATP depletion caused by MPP(+) (30-300 microM:) in SH-SY5Y cells without affecting intracellular net NADH content, suggesting a reduction of cellular ATP consumption rather than normalization of mitochondrial ATP production. Riluzole (1-10 microM:) also attenuated oxidative injury in both cell types induced by exposure to L-DOPA and 6-hydroxydopamine, respectively. Consistent with its antioxidative effects, riluzole reduced lipid peroxidation induced by Fe(3+) and L-DOPA in primary mesencephalic cultures. Riluzole (10 microM) did not alter high-affinity uptake of either DA or MPP(+). However, in the same cell systems, riluzole induced neuronal and glial cell death with concentrations higher than those needed for maximal protective effects (> or =100 microM:). These data demonstrate that riluzole has protective effects on DA neurons in vitro against neuronal injuries induced by (a) impairment of cellular energy metabolism and/or (b) oxidative stress. These results provide further impetus to explore the neuroprotective potential of riluzole in Parkinson's disease.  相似文献   

18.
Although L-DOPA is the drug of choice for Parkinson's disease, prolonged L-DOPA therapy results in decreased drug effectiveness and the appearance of motor complications. This may be due in part to the progressive loss of the enzyme, aromatic L-amino acid decarboxylase (AADC). We have developed an adeno-associated virus vector (AAV-hAADC) that contains human AADC cDNA under the control of the cytomegalovirus promoter. Infusion of this vector into the striatum of parkinsonian rats and monkeys improves L-DOPA responsiveness by improving AADC-mediated conversion of L-DOPA to dopamine. This is now the basis of a proposed therapy for advanced Parkinson's disease. A key concern has been that over-production of dopamine in striatal neurons could cause dopamine toxicity. To investigate this possibility in a controlled system, mixed striatal primary rat neuronal cultures were prepared. Exposure of cultures to high concentrations of L-DOPA induced the following changes: cell death in nigral and striatal neurons, aggregation of neurofilaments and focal axonal swellings, abnormal expression of DARPP-32, and activation of astroglia and microglial cells. Transduction of cultures with AAV-hAADC resulted in efficient and sustained neuronal expression of the AADC protein and prevented all the L-DOPA-induced toxicities. The protective effects were due primarily to AADC-dependent conversion of L-DOPA to dopamine and an increase in induction of vesicular monoamine transporter resulting in dopamine storage in cultured cells. These results suggest a neuroprotective role for AADC gene transfer against L-DOPA toxicity.  相似文献   

19.
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the most efficacious drug for the treatment of Parkinson's disease (PD), but causes adverse effects that limit its utility. L-DOPA-induced dyskinesia (abnormal involuntary movements) is a significant clinical problem that attracts growing scientific interest. Current notions attribute the development of dyskinesia to two main factors, viz. the loss of nigrostriatal dopamine (DA) projections and the maladaptive changes produced by L-DOPA at sites postsynaptic to the nigrostriatal neuron. Basic research in the past 15 years has placed a lot of emphasis on the postsynaptic plasticity associated with dyskinesia, but recent experimental work shows that also some presynaptic factors, involving the regulation of L-DOPA/DA release and metabolism in the brain, may show plasticity during treatment. This review summarizes significant studies of L-DOPA-induced dyskinesia in patients and animal models, and outlines directions for future experiments addressing mechanisms of presynaptic plasticity. These investigations may uncover clues to the varying susceptibility to L-DOPA-induced dyskinesia among PD patients, paving the way for tailor-made treatments.  相似文献   

20.
Monoamine oxidase (MAO) type A and type B were measured using kynuramine, 3,4-dihydroxyphenylethylamine (dopamine, DA), and 5-hydroxytryptamine (5-HT, serotonin) in 20 brain areas. The highest activities were found in the striatum (caudate nucleus, putamen, globus pallidus, and substantia nigra), hypothalamus, and c-mammilare. The ratio of DA to 5-HT deamination varied in the different regions, being in favor of DA in the striatum. With kynuramine as the substrate IC50 values of a number of inhibitors indicated that l-deprenyl was far more potent an inhibitor of human brain MAO than clorgyline or harmaline. N-Desmethylpropargylindane hydrochloride (AGN 1135) was also shown to have MAO-B inhibitory selectivity similar to that of l-deprenyl. Brains obtained at autopsy from l-deprenyl-treated Parkinsonian patients showed that, whereas MAO-B was fully inhibited by the therapeutic doses of l-deprenyl, substantial MAO-A activity was still evident. These results are matched by the significant increases of DA noted in caudate nucleus, globus pallidus, putamen, and substantia nigra and the unaltered 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the same regions. These data indicate that the therapeutic actions of l-deprenyl may lie in its selective inhibition of MAO-B resulting in increased brain levels of DA formed from L-dihydroxyphenylacetic acid (L-DOPA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号