首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

2.
研究揭示细胞膜磷脂脂肪酸组成与质膜ATP酶在酵母菌耐酒精中的一种新颖关系。实验表明,细胞膜磷脂脂肪酸组成特点对生长于未添加酒精条件下的自絮凝颗粒酵母质膜ATP酶活性没有影响,但却明显影响生长于添加酒精(1%~10%,V/V)条件下的菌体质膜ATP酶对酒精激活的敏感性:预培养于添加0.6mmol/L棕榈酸、亚油酸、或亚麻酸条件下的菌体的质膜ATP酶的最大激活水平分别为各自酶的基态水平(未激活)的3.6、1.5和1.2倍,而对照组(预培养于未添加脂肪酸条件下的菌体)的相应值为2.3倍,酶产生上述最大激活水平时的酒精浓度分别为7%、6%、6%、和7%(V/V)。酶激活后米氏常数Km、最适pH和对钒酸钠(质膜ATP酶特异性抑制剂)的敏感性等性质不变,但最大反应速度υmax明显增加。实验表明,细胞膜磷脂脂肪酸组成特点对提高菌体的耐酒精能力越有利,则其质膜ATP酶被酒精激活的幅度越大,说明菌体耐酒精能力的提高与其质膜ATP酶对酒精激活的敏感性的增加密切相关。细胞膜磷脂脂肪酸组成会影响酵母菌质膜ATP酶对酒精激活的敏感性是观察到的新的实验现象。  相似文献   

3.
Plasma membrane ATPase activity of Saccharomyces cerevisiae IGC 3507III grown in the presence of the lipophilic acid octanoic acid [4-50 mg l-1 (0.03-0.35 mM), pH 4.0] was 1.5-fold higher than that in cells grown in its absence. The Km for ATP, the pH profile and the sensitivity to orthovanadate of the basal and the activated forms of the membrane ATPase were identical. This activation was closely associated with a decrease in the biomass yield and an increase in the ethanol yield, and was rapidly reversed in vivo after removal of the acid. However, the activated level was preserved when membranes were extracted and subjected to manipulations which eliminated or decreased octanoic acid incorporation in the plasma membrane. The activity of the basal plasma membrane ATPase in the total membrane fraction was slightly increased by incubation at pH 6.5 with octanoic acid at 100 mg l-1 or less (2.4 mg acid form plus 97.6 mg octanoate ion l-1). However, destruction of the permeability barrier between the enzyme and its substrate could not explain the in vivo activation. A role for plasma membrane ATPase activation in the regulation of the intracellular pH (pHi) of cells grown with octanoic acid was not proven.  相似文献   

4.
ATPase activity was studied in plasma membrane-enriched fractions prepared from cultured Citrus sinensis L. cv. Osbeck cells. In general, properties of the plasma membrane ATPase from cultured cells, such as optimal pH and temperature. Vmax and Km were similar to those already observed in higher plants. The effects of high salt concentrations on ATPase activity were studied in membrane fractions derived from salt-sensitive and salt-tolerant cells grown in the presence or absence of salt. NaCl did not have an in vivo effect on Vmax and the apparent Km value for ATP. However, high concentrations of NaCl, or KCl, added in vitro, induced cooperativity in the enzyme and reduced the affinity of the enzyme for its substrate. Isoosmolar concentrations of sucrose or choline chloride failed to do so. Our results suggest that the plasma membrane ATPase of Citrus cells has more than one substrate-binding site on the native form of the enzyme which interact in the presence of salt and act independently in its absence.  相似文献   

5.
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface.  相似文献   

6.
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface.  相似文献   

7.
Cells of Saccharomyces cerevisiae exibited a more active plasma membrane H+-ATPase during growth in media supplemented with CuSO4 concentrations equal to or below 1 mM than did cells cultivated in the absence of copper stress. Maximal specific activities were found with 0.5 mM CuSO4. ATPase activity declined when cells were grown with higher concentrations up to 1.5 mM (the maximal concentration that allowed growth), probably due to severe disorganization of plasma membrane. Cu2+-induced maximal activation was reflected in an increase of V max (approximately threefold) and in the slight decrease of the K m for MgATP (from 0.93 ± 0.13 to 0.65 ± 0.16 mM). The expression of the gene encoding the essential plasma membrane ATPase (PMA1) was reduced with a dose-dependent pattern in cells grown with inhibitory concentrations of copper, while the weakly expressed PMA2 gene promoter was moderately more efficient in cells cultivated under mild copper stress (1.5-fold maximal activation). ATPase was activated by copper despite the slightly lower content of ATPase protein in the plasma membrane of Cu2+-grown cells and the powerful inhibitory effect of Cu2+ in vitro. Received: 6 May 1998 / Accepted: 14 September 1998  相似文献   

8.
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into the mechanisms involved in ethanol toxicity and tolerance in this organism. Exposure to ethanol resulted in an increase in the permeability of the cytoplasmic membrane, enhancing passive proton influx and concomitant loss of intracellular material (absorbing at 260 nm). Cells grown in the presence of 8% (vol/vol) ethanol revealed adaptation to ethanol stress, since these cells showed higher retention of compounds absorbing at 260 nm. Moreover, for concentrations higher than 10% (vol/vol), lower rates of passive proton influx were observed in these ethanol-adapted cells, especially at pH 3.5. The effect of ethanol on O. oeni cells was studied as the ability to efficiently retain carboxyfluorescein (cF) as an indicator of membrane integrity and enzyme activity and the uptake of propidium iodide (PI) to assess membrane damage. Flow cytometric analysis of both ethanol-adapted and nonadapted cells with a mixture of the two fluorescent dyes, cF and PI, revealed three main subpopulations of cells: cF-stained intact cells; cF- and PI-stained permeable cells, and PI-stained damaged cells. The subpopulation of O. oeni cells that maintained their membrane integrity, i.e., cells stained only with cF, was three times larger in the population grown in the presence of ethanol, reflecting the protective effect of ethanol adaptation. This information is of major importance in studies of microbial fermentations in order to assign bulk activities measured by classical methods to the very active cells that are effectively responsible for the observations.  相似文献   

9.
We have recently shown that acetylated tubulin interacts with plasma membrane Na(+),K(+)-ATPase and inhibits its enzyme activity in several types of cells. H(+)-ATPase of Saccharomyces cerevisiae is similarly inhibited by interaction with acetylated tubulin. The activities of both these ATPases are restored upon dissociation of the acetylated tubulin/ATPase complex. Here, we report that in plasma membrane vesicles isolated from brain synaptosomes, another P-type ATPase, plasma membrane Ca(2+)-ATPase (PMCA), undergoes enzyme activity regulation by its association/dissociation with acetylated tubulin. The presence of acetylated tubulin/PMCA complex in membrane vesicles was demonstrated by analyzing the behavior of acetylated tubulin in a detergent partition, and by immunoprecipitation experiments. PMCA is known to be stimulated by ethanol and calmodulin at physiological concentrations. We found that treatment of plasma membrane vesicles with these reagents induced dissociation of the complex, with a concomitant restoration of enzyme activity. Conversely, incubation of vesicles with exogenous tubulin induced the association of acetylated tubulin with PMCA, and the inhibition of enzyme activity. These findings indicate that activation of synaptosomal PMCA by ethanol and calmodulin involves dissociation of the acetylated tubulin/PMCA complex. This regulatory mechanism was shown to also operate in living cells.  相似文献   

10.
Syringomycin, a peptide toxin produced by the phytopathogen Pseudomonas syringae pv syringae preferentially stimulated (2-fold) the vanadate-sensitive ATPase activity associated with the plasma membrane of red beet storage tissue. The toxin had a very slight effect on the tonoplast ATPase and had no detectable effect on the mitochondrial ATPase. Optimal stimulation was achieved with 10 to 50 micrograms of syringomycin per 25 micrograms of membrane protein. Treatment of membranes with 0.1% (weight/volume) deoxycholate eliminated the activation effect, and enzyme solubilized with Zwittergent 3-14 was not affected by syringomycin. ATPase activity was activated to the same extent at KCl concentrations ranging from 0 to 50 millimolar. Valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenylhydrazone, and gramicidin did not increase the plasma membrane ATPase activity. However, these ionophores did not hinder the ability of syringomycin to stimulate the activity. We suggest that syringomycin does not increase ATPase activity by altering membrane ion gradients nor directly interacting with the enzyme, but possibly through regulatory effectors or covalent modification of the enzyme.  相似文献   

11.
A salt-tolerant yeast Debaryomyces hansenii IFO 10939, which is able to grow at pH 10.0, was isolated and characterized. IFO 10939 had the ability of maintaining intracellular pH. The in vivo activation of plasma membrane ATPase was observed in cells grown at pH 6.2 during conditioning in buffer at pH 9.0. Alkalification of growth medium exhibited a significant increase in acetate and propionate production. The results suggested that the regulation of intracellular pH was involved in plasma membrane ATPase pumping protons out of the cells and weak acid formation for the source of the protons in cells growing at high pH. Received: 4 December 2001 / Accepted: 24 January 2002  相似文献   

12.
A Mg-dependent adenosine triphosphatase (ATPase) activated by submicromolar free Ca2+ was identified in detergent-dispersed rat liver plasma membranes after fractionation by concanavalin A-Ultrogel chromatography. Further resolution by DE-52 chromatography resulted in the separation of an activator from the enzyme. The activator, although sensitive to trypsin hydrolysis, was distinct from calmodulin for it was degraded by boiling for 2 min, and its action was not sensitive to trifluoperazine; in addition, calmodulin at concentrations ranging from 0.25 ng-25 micrograms/assay had no effect on enzyme activity. Ca2+ activation followed a cooperative mechanism (nH = 1.4), half-maximal activation occurring at 13 +/- 5 nM free Ca2+. ATP, ITP, GTP, CTP, UPT, and ADP displayed similar affinities for the enzyme; K0.5 for ATP was 21+/- 9 microM. However, the highest hydrolysis rate (20 mumol of Pi/mg of protein/10 min) was observed at 0.25 mM ATP. For all the substrates tested kinetic studies indicated that two interacting catalytic sites were involved. Half-maximal activity of the enzyme required less than 12 microM total Mg2+. This low requirement for Mg2+ of the high affinity (Ca2+-Mg2+)ATPase was probably the major kinetic difference between this activity and the nonspecific (Ca2+ or Mg2+)ATPase. In fact, definition of new assay conditions, i.e. a low ATP concentration (0.25 mM) and the absence of added Mg2+, allowed us to reveal the (Ca2+-Mg2+)ATPase activity in native rat liver plasma membranes. This enzyme belongs to the class of plasma membrane (Ca2+-Mg2+)ATPases dependent on submicromolar free Ca2+ probably responsible for extrusion of intracellular Ca2+.  相似文献   

13.
14.
ADP-ribosylation of membrane proteins from rabbit small intestinal epithelium was investigated following incubation of membranes with [32P]NAD and cholera toxin. Cholera toxin catalyzes incorporation of 32P into three proteins of 40 kDA, 45 kDa and 47 kDa located in the brush-border membrane. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of membrane proteins from brush border occurred in spite of the virtual absence in these membranes of adenylate cyclase activatable either by cholera toxin, vasoactive intestinal peptide (VIP) or fluoride. The three agents activated adenylate cyclase when crude plasma membrane were used. Cholera toxin activated fivefold at 10 micrograms/ml. Vasoactive intestinal peptide activated at concentrations from 10-300 nM, the maximal stimulation being sixfold. Fluoride activated 10-fold at 10 mM. When basal lateral membranes were assayed for adenylate cyclase it was found that, with respect to the crude membranes, the specific activity of fluoride-activated enzyme was 3.3-fold higher, VIP stimulated enzyme was maintained while cholera-toxin-stimulated enzyme showed half specific activity. Moreover, while fluoride stimulated ninefold and VIP stimulated fivefold, cholera toxin only stimulated twofold at the highest concentration. The results suggest that the activation by cholera toxin of adenylate cyclase located at the basal lateral membrane requires ADPribosylation of proteins in the brush border membrane.  相似文献   

15.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   

16.
ATPase of yeast plasmalemma is known to be activated during incubation of cells or protoplasts with glucose. It has been shown that the level of ATPase activation is sharply decreased after pretreatment of cells or protoplasts with mercaptoethanol, dinitrophenol, gramicidin D, nigericin, or monensin. It is suggested that deenergization of yeast plasmalemma by monensin, nigericin, and mercaptoethanol as uncoupler plays a crucial role in the prevention of in vivo activation of plasma membrane ATPase by glucose. It is concluded that energization of yeast plasmalemma is necessary for activation of ATPase by glucose.  相似文献   

17.
The binding of concanavalin A and of fluorescein 5'-isothiocyanate indicate similar amount of right-side-out and inside-out vesicles in plasma membrane vesicles from either glucose-starved or glucose-fermenting yeast cells. These vesicles contain low-activity and high-activity states of the ATPase, respectively. Unmasking of latent active sites can explain the limited ATPase activation (about 2-fold) produced by several detergents on both kinds of vesicles. On the other hand, lysophosphatidic acid (oleoyl) produces a 7-fold activation of the ATPase in vesicles from glucose-starved cells. This effect is accompanied by a change in Km of the enzyme and probably reflects a direct action of the detergent on the ATPase. A similar activation and Km change can be obtained by sonication of the vesicles, although in this case soybean phospholipids are required for maximal activity. Apparently the low-activity state of the yeast plasma membrane ATPase can be activated not only by glucose metabolism 'in vivo' (mechanism unknown) but also by some detergents and physical treatments 'in vitro'. Experiments with purified ATPase from glucose-starved cells also indicate that lysophosphatidic acid (oleoyl) specifically activates the enzyme. These results suggest a note of caution on considering the usual interpretation of the effects of detergents on membrane enzymes, which only take into account the unmasking of latent active sites.  相似文献   

18.
The Ca2+ pump of the plasma membrane of human red blood cells is associated with the activity of a (Ca2+ + Mg2+)-ATPase. Both the ATPase and the pump are stimulated above basal activities by calmodulin, an ubiquitous Ca2+-binding protein. Calmodulin isolated from human red blood cells was shown to be equipotent and equieffective with that isolated from beef brain. Half-maximal activation of ATPase (isolated red blood cell membranes, 37 C) and transport (inside-out red blood cell membrane vesicles, 25 C) were obtained with 2.5 and 4.4 nM calmodulin, respectively. Ca2+ dependence of Ca2+ transport was measured in the absence and in the presence of 50 nM calmodulin. At all Ca2+ concentrations above 2 X 10(-7) M Ca2+, the rate of transport was greater in the presence of calmodulin. The results implicate calmodulin in the regulation of the plasma membrane Ca2+ pump, but the mechanism(s) remain to be elucidated.  相似文献   

19.
Ca2+- and Mg2+-dependent ATPase activity (EC 3.6.1.3) in a plasma membrane-enriched fraction increased rapidly after in vivo application of physiologically active concentrations of triacontanol (TRIA) to the roots of barley ( Hordeum vulgare L. cv. Conquest) seedlings. Ca2+- and Mg2+-dependent ATPase activity was 64 and 85% higher, respectively, in the roots of seedlings germinated in the presence of growth-promoting concentrations of TRIA compared to controls. The increase in vivo was concentration dependent, with the greatest increase obtained at 2.3 n M TRIA. Maximal stimulation of ATPase activity of excised tissue treated with TRIA coincided with the temperature at which the barley was grown. At this temperature the plasma membrane is primarily in a mixed gel/liquid crystalline state. Pretreatment of barley roots with cyclohexamide did not alter ATPase stimulation by TRIA. Two to three times more [14C]-TRIA (mg membrane protein)−1 was found associated with plasma membrane-enriched vesicles treated with TRIA than with vesicles enriched for mitochondrial membranes or for vesicles enriched for tonoplast, Golgi and rough endoplasmic reticulum. Both Ca2+- and Mg2+-dependent ATPase activity increased by 40–60% within 30 min of the addition of 2.3 n M TRIA to cell-free extracts of barley roots. The addition of octacosanol, the C28 analogue of TRIA, to cell-free extracts did not affect metal-dependent ATPase activity. Consistent with many studies in the green-house, simultaneous additions of equimolar amounts of TRIA and octacosanol to cell-free extracts resulted in inhibition of ATPase stimulation by TRIA. TRIA may directly affect plasma membrane function in barley roots.  相似文献   

20.
Partially (6-fold) purified plasma membrane ATPase from an ethanol-sensitive yeast, Kloeckera apiculata, had an optimum pH of 6.0, an optimum temperature of 35°C, a K m of 3.6 mm ATP and a V max of 11 mol Pi/min.mg protein. SDS-PAGE of the semi-purified plasma membrane showed a major band of 106 kDa. No in vivo activation of the ATPase by glucose was observed. Although 4% (v/v) ethanol decreased the growth rate by 50% it did not affect the ATPase. Concentrations of ethanol 2% (v/v) did, however, inhibit the enzyme in vitro. The characteristics of the enzyme did not change during growth in the presence of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号