首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of acidic ribosomal proteins P1/P2-P0 is a common phenomenon in eukaryotic organisms. It was found previously that in Trichosporon cutaneum, unlike in other yeast species, in addition to the two acidic ribosomal proteins, two other proteins of 15 kDa and 19 kDa of the small ribosomal subunit were phosphorylated. Here we describe two protein kinases: CKI and CKII, which are engaged in the modification of T. cutaneum ribosomal proteins. The acidic ribosomal proteins and the protein of 19 kDa were modified by CKII associated with ribosomes, while the protein of 15 kDa was modified by CKI. Protein kinase CKI was purified from cell-free extract (CKIC) and from ribosomal fraction (CKIR). The molecular mass of CKIC was established at 33 kDa while that of CKIR at 35-37 kDa. A protein of 40 kDa copurified with CKIR but not CKIC. Heparin significantly increased 40 kDa protein phosphorylation level by CKIR. Microsequencing analysis revealed the presence of CKI recognition motifs in the N-terminal fragment of the 40 kDa protein.  相似文献   

2.
Phosphophoryns are the major non-collagenous proteins of the mineralized matrix of rat incisor dentin. Nearly half the phosphophoryn residues are serines, and 85-90% of these are phosphorylated. Since phosphorylation may be important for phosphophoryn function, it was of interest to identify the kinase(s) responsible for catalyzing their phosphophorylation. Rat osteosarcoma (ROS) 17/2.8 osteoblast-like cells were selected as the enzyme source. Native rat incisor phosphophoryns (RIPP-I, II, III) were not substrates for any of the ROS 17/2.8 messenger-dependent kinases but were phosphorylated by membrane-associated endogenous messenger-independent kinases. These were resolved chromatographically and identified as casein kinase (CK) I and II by elution properties and immunoblotting with a CKII antibody. The CKI preferentially used RIPP-III as substrate, while CKII preferred RIPP-I and II. Heparin at 100 and 500 ng/assay and NaCl at 0.25-0.4 M inhibited phosphorylation of the RIPP by CKI and CKII in parallel. At 10 mM spermine, phosphorylation of RIPP-I and II by CKII, and of RIPP-III by CKI were inhibited, but phosphorylation of RIPP-III by CKII was enhanced. Purified sea star oocyte CKII demonstrated the same substrate specificity and spermine concentration shift as the ROS 17/2.8 CKII. These data show that osteoblast-like cells are a rich source of membrane-bound CKI and CKII activity. The different patterns of phosphorylation of RIPP-I, II, and III further show that they are distinct synthetic products of the odontoblast.  相似文献   

3.
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.  相似文献   

4.
Casein kinases I (CKI) are serine/threonine protein kinases widely expressed in a range of eukaryotes including yeast, mammals and plants. They have been shown to play a role in diverse physiological events including membrane trafficking. CKI alpha is associated with synaptic vesicles and phosphorylates some synaptic vesicle associated proteins including SV2. In this report, we show that syntaxin-1A is phosphorylated in vitro by CKI on Thr21. Casein kinase II (CKII) has been shown previously to phosphorylate syntaxin-1A in vitro and we have identified Ser14 as the CKII phosphorylation site, which is known to be phosphorylated in vivo. As syntaxin-1A plays a key role in the regulation of neurotransmitter release by forming part of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, we propose that CKI may play a role in synaptic vesicle exocytosis.  相似文献   

5.
Vpu as a human-immunodeficiency-virus-type-1-encoded 81-amino-acid integral-membrane protein was expressed in Escherichia coli using the inducible ptrc promoter of an ATG fusion vector. Recombinant Vpu is associated with membranes of E. coli and could be partially solubilized by detergents. Recombinant Vpu was phosphorylated in vitro with purified porcine casein kinase II (CKII) as well as with a CKII-related protein kinase found in cytoplasmic extracts of human and hamster cells. Recombinant Vpu associated with E. coli membranes has turned out to be the best substrate for in vitro phosphorylation with CKII. This reaction can be inhibited by heparin and the ATP analogue 5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (DRB), both known to be potent inhibitors of CKII. Radiolabelled gamma ATP and gamma GTP were used as phosphate donors in vitro phosphorylation of recombinant Vpu. In vivo phosphorylation of Vpu in HIV-1-infected H9 cells was also inhibited by DRB. We concluded therefrom that the Vpu protein is phosphorylated by the ubiquitous CKII in HIV-1-infected human host cells. Two seryl residues in the sequence of Vpu (position 52 and 56) correspond to the consensus S/TXXD/E for CKII. These potential phosphorylation sites are located within a well-conserved dodecapeptide of Vpu (residues 47-58), which is found in different HIV-1 strains as well as in a Vpu-like protein of SIVCPZ. Monoclonal and polyclonal antibodies directed against two different epitopes of Vpu were used for immunoprecipitation of Vpu from HIV-1-infected cells and for detection of Vpu in Western blot analyses. Vpu from HIV-1-infected cells as well as recombinant Vpu expressed in E. coli were determined by SDS/PAGE using 6 M urea to be 9 kDa, which corresponds to the calculated molecular mass of Vpu.  相似文献   

6.
FREQUENCY (FRQ), a key component of the Neurospora circadian clock, is progressively phosphorylated after its synthesis. Previously, we identified casein kinase II (CKII) as a kinase that phosphorylates FRQ. Disruption of the catalytic subunit of CKII abolishes the clock function; it also causes severe defects in growth and development. To further establish the role of CKII in clock function, one of the CKII regulatory subunit genes, ckb1, was disrupted in Neurospora. In the ckb1 mutant strain, FRQ proteins are hypophosphorylated and more stable than in the wild-type strain, and circadian rhythms of conidiation and FRQ protein oscillation were observed to have long periods but low amplitudes. These data suggest that phosphorylation of FRQ by CKII regulates FRQ stability and the function of the circadian feedback loop. In addition, mutations of several putative CKII phosphorylation sites of FRQ led to hypophosphorylation of FRQ and long-period rhythms. Both CKA and CKB1 proteins are found in the cytoplasm and in the nucleus, but their expressions and localization are not controlled by the clock. Finally, disruption of a Neurospora casein kinase I (CKI) gene, ck-1b, showed that it is not required for clock function despite its important role in growth and developmental processes. Together, these data indicate that CKII is an important component of the Neurospora circadian clock.  相似文献   

7.
Protein kinases and phosphatases are responsible for several cellular events mediated by protein phosphorylation and dephosphorylation. Among these events are cell growth and differentiation and cellular metabolism. Casein kinase I (CKI) and casein kinase II (CKII) are involved in the phosphorylation of several substrates. Endogenous protein phosphorylation and casein kinase activity were investigated in the megagametophyte of the native Brazilian conifer Araucaria angustifolia, during seed development. It was observed that a number of different polypeptides are phosphorylated in vitro in the three megagametophyte stages of development tested (from globular, cotyledonary and mature embryos, respectively) and the phosphate was incorporated mainly in serine residues. The use of okadaic acid and vanadate in the phosphorylation reactions increased phosphate incorporation in several polypeptides suggesting the presence of serine/threonine as well as tyrosine phosphatases in the megagametophyte. Also, the results obtained in experiments with CKII inhibitor, GTP as phosphate donor, RNA hybridizations, and in-gel kinase assays indicate the presence of CKII in the A. angustifolia megagametophyte.  相似文献   

8.
The ribosomal stalk is involved directly in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypepties and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes, the acidic components correspond to the 12 kDa P1 and P2 proteins, and the RNA binding component is protein P0. All these proteins are found to be phosphorylated in eukaryotic organisms. Previousin vitro data suggested this modification was involved in the activity of this structure. To confirm this possibility a mutational study has shown that phosphorylation takes place at a serine residue close to the carboxyl end of proteins P1, P2 and P0. This serine is part of a consensus casein kinase II phosphorylation site. However, by using a yeast strain carrying a temperature sensitive mutant, it has been shown that CKII is probably not the only enzyme responsible for this modification. Three new protein kinases, RAPI, RAPII and RAPIII, have been purified and compared with CKII and PK60, a previously reported enzyme that phosphorylates the stalk proteins. Differences among the five enzymes have been studied. It has also been found that some typical effects of the PKC kinase stimulate thein vitro phosphorylation of the stalk proteins. All the data available suggest that phosphorylation, although it is not involved in the interaction of the acidic proteins with the ribosome, affects ribosome activity and might participate in some ribosome regulatory mechanism. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   

9.
Connexin (Cx) 45.6, an avian counterpart of rodent Cx50, is phosphorylated in vivo, but the sites and function of the phosphorylation have not been elucidated. Our peptide mapping experiments showed that the Ser(363) site in the carboxyl (COOH) terminus of Cx45.6 was phosphorylated and that this site is within casein kinase (CK) II consensus sequence, although showing some similarity to CKI sequence. The peptide containing Ser(363) could be phosphorylated in vitro by CKII, but not by CKI. Furthermore, CKII phosphorylated Cx45.6 in embryonic lens membrane and the fusion protein containing the COOH terminus of Cx45.6. Two-dimensional peptide mapping experiments showed that one of the Cx45.6 peptides phosphorylated in vivo migrated to the same spot as one of those phosphorylated by CKII in vitro. Furthermore, CKII activity could be detected in lens lysates. To assess the function of this phosphorylation event, exogenous wild type and mutant Cx45.6 (Ser(363) --> Ala) were expressed in lens primary cultures by retroviral infection. The mutant Cx45.6 was shown to be more stable having a longer half-life compared with wild type Cx45.6. Together, the evidence suggests that CKII is likely a kinase responsible for the Ser(363) phosphorylation, leading to the destablization and degradation of Cx45.6. The connexin degradation induced by phosphorylation has a broad functional significance in the regulation of gap junctions in vivo.  相似文献   

10.
Bid plays an essential role in Fas-mediated apoptosis of the so-called type II cells. In these cells, following cleavage by caspase 8, the C-terminal fragment of Bid translocates to mitochondria and triggers the release of apoptogenic factors, thereby inducing cell death. Here we report that Bid is phosphorylated by casein kinase I (CKI) and casein kinase II (CKII). Inhibition of CKI and CKII accelerated Fas-mediated apoptosis and Bid cleavage, whereas hyperactivity of the kinases delayed apoptosis. When phosphorylated, Bid was insensitive to caspase 8 cleavage in vitro. Moreover, a mutant of Bid that cannot be phosphorylated was found to be more toxic than wild-type Bid. Together, these data indicate that phosphorylation of Bid represents a new mechanism whereby cells control apoptosis.  相似文献   

11.
Rat liver mitochondrial glycerophosphate acyltransferase (mtGAT) possesses 14 consensus sites for casein kinase II (CKII) phosphorylation. To study the functional relevance of phosphorylation to the activity of mtGAT, we treated isolated rat liver mitochondria with CKII and found that CKII stimulated mtGAT activity approximately 2-fold. Protein phosphatase-lambda treatment reversed the stimulation of mtGAT by CKII. Labeling of both solubilized and non-solubilized mitochondria with CKII and [gamma-32P]ATP resulted in a 32P-labeled protein of 85kDa, the molecular weight of mtGAT. Our findings suggest that CKII stimulates mtGAT activity by phosphorylation of the acyltransferase. The significance of this observation with respect to hormonal control of the enzyme is discussed.  相似文献   

12.
It is generally accepted that incubation with heparin is required to induce capacitation of ejaculated bovine spermatozoa in vitro. The capacitation process implicates many biochemical events, and is correlated with modified sperm motility and the phosphorylation of specific proteins on tyrosine residues. To better understand the molecular basis of heparin-induced capacitation, bovine spermatozoa were incorporated with a radioactive substrate of protein kinases [gamma32P]-ATP, to observe protein phosphorylation dynamics over time. Sperm motion parameters including the percentage of motile spermatozoa, amplitude of lateral head displacement (ALH) and flagellar beat cross frequency (BCF) were assessed to determine whether the protein phosphorylation patterns induced by heparin also promote changes in motility. Capacitation was confirmed using the chlortetracycline fluorescence assay and the appearance of 'pattern B' stained spermatozoa. Evaluation of the different motility parameters during capacitation reveal that heparin has a marked negative effect, over time, on the percentage of motile spermatozoa, consistent with hyperactivation. Indeed, the presence of heparin greatly increases the BCF of bull spermatozoa and induces a significant increase in the ALH compared to spermatozoa incubated without heparin. We detected several sperm proteins that are phosphorylated over time. A 45 kDa protein is the most intensely phosphorylated of the sperm proteins. However, it is visible regardless of the presence of heparin. Interestingly, a second phosphorylated protein of approximately 50 kDa undergoes more intense phosphorylation with heparin than without. In summary, the present study demonstrated that heparin induces physiological changes in several sperm motility parameters including ALH, BCF and the percentage of motile spermatozoa. Heparin also increases the intensity of phosphorylation of a 50 kDa sperm protein. These results suggest that capacitation of bovine spermatozoa and capacitation-associated motility changes may be regulated by a mechanism that includes protein phosphorylation, and that a presently unknown protein kinase is involved.  相似文献   

13.
14.
The effects of platelet secretion inhibitors on protein phosphorylation   总被引:2,自引:0,他引:2  
Protein phosphorylation was investigated in human platelets after stimulation to secretion by thrombin. After stimulation by thrombin at 4 degrees C (in which secretion is inhibited), phosphorylations of the 80, 56, and 38 kDa polypeptides and dephosphorylation of the 67 kDa phosphopeptide eventually occurred. The phosphorylations of the 27 and 20 kDa polypeptides remained inhibited until the temperature was increased to 37 degree C, which also resulted in secretion. Various stimulants and inhibitors of platelet function were used to characterize individual protein phosphorylations. The divalent-cation ionophore, A23187, induced the phosphorylations (or dephosphorylation) of the same proteins as thrombin with the exception of the 80 kDa protein, which remained incompletely phosphorylated. The intracellular calcium antagonist, TMB-8, inhibited thrombin-stimulated secretion and phosphorylation of all the polypeptides except the 80 kDa protein. The dephosphorylation of the 67 kDa phosphoprotein was not affected by TMB-8. Incubation of platelets with prostaglandin E1 and isobutylmethylxanthine inhibited thrombin-stimulated secretion and the phosphorylation of the 38 and 20 kDa protein and increased the phosphorylation of the 67 and 27 kDa phosphoproteins. These observations may be used to correlate protein phosphorylation with secretion, suggesting a possible sequence of intracellular events that mediate thrombin-stimulated secretion.  相似文献   

15.
Aberrant vascular smooth muscle cell (VSMC) hyperplasia is the hallmark of atherosclerosis and restenosis seen after vascular surgery. Heparin inhibits VSMC proliferation in animal models and in cell culture. To test our hypothesis that heparin mediates its antiproliferative effect by altering phosphorylation of key mitogenic signaling proteins in VSMC, we examined tyrosine phosphorylation of cellular proteins in quiescent VSMC stimulated with serum in the presence or absence of heparin. Western blot analysis with anti-phosphotyrosine antibodies shows that heparin specifically alters the tyrosine phosphorylation of only two proteins (42 kDa and 200 kDa). The 200 kDa protein (p200) is dephosphorylated within 2.5 min after heparin treatment with an IC50 that closely parallels the IC50 for growth inhibition. Studies using the tyrosine phosphatase inhibitor, sodium orthovanadate, indicate that heparin blocks p200 phosphorylation by inhibiting a kinase. Phosphorylation of p200 is not altered in heparin-resistant cells, supporting a role for p200 in mediating the antiproliferative effect of heparin. Purification and sequence analysis indicate that p200 exhibits very high homology to the heavy chain of nonmuscle myosin IIA. The 42 kDa protein, identified as mitogen activated protein kinase (MAPK), undergoes dephosphorylation within 15 min after heparin treatment, and this effect is also not seen in heparin-resistant cells. The identification of only two heparin-regulated tyrosine phosphoproteins suggests that they may be key mediators of the antiproliferative effect of heparin.  相似文献   

16.
The Schistosoma mansoni parasite life cycle involves complex developmental processes that enable it to cause severe hepatic damage. Protein phosphorylation has previously been implicated in the transformation of cercariae to schistosomula of S. mansoni. Here, we studied the possible involvement of surface (ecto) and shed (exo) protein kinases (PKs) in this developmental process. We found that ecto-PKs are indeed located on the surface of the schistosomula and can phosphorylate up to 5 distinct proteins at this location. Surface phosphorylation was sensitive to acetylcholine, which increased phosphorylation of 3 proteins and reduced phosphorylation of the other 2. The ecto-PKs can be shed from the surface into the incubation medium during parasite differentiation. The main exo-PK is CKII, as concluded from the substrate specificity of the PK, its inhibition by heparin, activation by spermin, and recognition by antibody directed to the anti--alpha-subunit of CKII in the incubation medium of the schistosomula. In spite of its similarity to the ecto-PKs, the activity of the exo-PK is not affected by addition of acetylcholine. These results indicate that ecto- and exo-PKs could be involved in the parasite's development or host-parasite interactions.  相似文献   

17.
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.  相似文献   

18.
Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity, increased phosphorylation of a 110-kDa protein is observed. Treatment of the embryo extracts with heparin, a highly specific inhibitor of CKII activity, results in a drastic reduction of the 110-kDa protein phosphorylation indicating that the protein might be a CKII-specific substrate. Rapidly proliferating mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme activity with minor alterations throughout the different stages of embryogenesis investigated.  相似文献   

19.
DNA binding activity of casein kinase II   总被引:2,自引:0,他引:2  
Casein kinase II, an ubiquitous, oligomeric, messenger-independent protein kinase has previously been shown to concentrate in the nuclear compartment when cells are stimulated to proliferate. The present communication reports that purified mammalian CKII interacts with genomic DNA preparations in vitro. This interaction led to an apparent activation of the kinase, most likely explained by prevention of its aggregation and subsequent denaturation. Binding of CKII was optimum with double stranded DNA preparations; duplex lambda phage DNA exhibited at least two types of binding sites and the high affinity system (Kd approximately equal to 6 x 10(-13) M) represented a binding capacity of about 1 mol CKII per mol DNA. CKII-DNA interaction was stimulated in the presence of a polyamine and inhibited by heparin. Blotting experiments disclosed that DNA binds CKII through its alpha subunit. These observations are in line with the hypothesis that casein kinase II may be examined as a component in the transduction of the mitogenic signal from the cell membrane to the nucleus, in response to growth factors.  相似文献   

20.
A detergent extract isolated from the enriched fraction of integral membrane proteins of Jurkat cells showed an enhanced tyrosine phosphate level when phosphorylated in the presence of phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDBu). The enhanced tyrosine phosphorylation was observed when the reaction time exceeded 6 min; at shorter incubation times, however, TPA inhibited tyrosine phosphorylation. When the reaction proceeded for a constant time period longer than 6 min and phorbol esters were added at different times after the start of the reaction, two phases of an enhanced tyrosine phosphorylation of a 50 kDa protein were observed. An increased phosphorylation of the 50 kDa protein was correlated with an enhanced phosphorylation of poly(Glu4,Tyr1). The two phases of enhanced phosphorylation differed in their TPA and PDBu requirement and in the proteins that were tyrosine phosphorylated. Studies with protein kinase C (PKC) inhibitors showed a negatively correlated effect on the enhanced tyrosine phosphorylation in phase I; tyrosine phosphorylation was further augmented. In phase II the regulation of tyrosine phosphorylation correlated with the efficiency of the PKC inhibitors on the alpha-isoform of PKC which was found in the cell extract. Separation of the proteins present in the investigated cell extract by gel filtration revealed a co-migration of the alpha-PKC and the 50 kDa protein. The metabolic labeling of intact Jurkat cells with 32Pi indicated that phorbol esters are also able to induce tyrosine phosphorylation of the 50 kDa protein underin vivo conditions. These data suggest an activation of two different tyrosine phosphorylation pathways by phorbol esters involving tyrosine phosphorylation/autophosphorylation of a 50 kDa kinase, as confirmed by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) labeling, that are accurately regulated by alpha-PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号