首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus casei cells have been shown previously to utilize two separate binding proteins for the transport of folate and thiamine. Folate transport, however, was found to be strongly inhibited by thiamine in spite of the fact that the folate-binding protein has no measurable affinity for thiamine. This inhibition, which did not fluctuate with intracellular adenosine triphosphate levels, occurred only in cells containing functional transport systems for both vitamins and was noncompetitive with folate but competitive with respect to the level of folate-binding protein. Folate uptake in cells containing optimally induced transport systems for both vitamins was inhibited by thiamine (1 to 10 muM) to a maximum of 45%; the latter value increased to 77% in cells that contained a progressively diminished folate transport system and a normal thiamine system. Cells preloaded with thiamine could transport folate at a normal rate, indicating that the inhibition resulted from the entry of thiamine rather than from its presence in the cell. In a similar fashion, folate (1 to 10 muM) did not interfere with the binding of thiamine to its transport protein, but inhibited thiamine transport (to a maximum of 25%). Competition also extended to biotin, whose transport was strongly inhibited (58% and 73%, respectively) by the simultaneous uptake of either folate or thiamine; biotin, however, had only a minimal effect on either folate or thiamine transport. The nicotinate transport system was unaffected by co-transport with folate, thiamine, or biotin. These results are consistent with the hypothesis that the folate, thiamine, and biotin transport systems of L. casei each function via a specific binding protein, and that they require, in addition, a common component present in limiting amounts per cell. The latter may be a protein required for the coupling of energy to these transport processes.  相似文献   

2.
In Escherichia coli ML 308-225, d-ribose is transported into the cell by a constitutive active transport system of high activity. The activity of this transport system is severely reduced in cells subjected to osmotic shock, and the system is not present in membrane vesicles. The mechanism by which metabolic energy is coupled to transport of ribose was investigated. Substrates which generate adenosine 5'-triphosphate primarily through oxidative phosphorylation are poor energy sources for ribose uptake in DL-54, a mutant of ML 308-225 which lacks activity for the membrane-bound Ca(2+), Mg(2+)-dependent adenosine triphosphatase required for oxidative phosphorylation. Arsenate severely inhibits ribose uptake, whereas, under the same conditions, uptake of l-proline is relatively insensitive to arsenate. Anaerobiosis does not significantly inhibit ribose uptake in ML 308-225 or DL-54 when glucose is the energy source. A significant amount of ribose uptake is resistant to uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol. These results indicate that the phosphate bond energy of adenosine 5'-triphosphate, rather than an energized membrane state, couples energy to ribose transport in ML 308-225.  相似文献   

3.
Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.   总被引:1,自引:0,他引:1  
Active transport of glucose in prosthecae isolated from cells of Asticcacaulis biprosthecum was stimulated by the non-physiological electron donor N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride. Glucose uptake was mediated by two transport systems; the apparent Km of the high-affinity system was 1.8 muM and that of the low-affinity system was 34 muM. Free glucose accumulated within prosthecae at a concentration 60 to 200 times above that present externally, depending on the Km of the system being observed. The glucose transport system in prosthecae was stereospecific for D-glucose, and neither methyl alpha-D-glucopyranoside nor 2-deoxyglucose was transported. Uptake of glucose was inhibited by N-ethylmaleimide (NEM) and p-chloromercuribenzoate (PCMB), and the inhibition by PCMB but not by NEM was reversed by dithiothreitol. Glucose uptake was also inhibited by the uncoupling agents 5-chloro-3-t-butyl-2'-nitrosalicylanilide (S-13), 5-chloro-3-(p-chlorophenyl)-4'-chlorosalicylanilide (S-6), and carbonyl-cyanide m-chlorophenylhydrazone (CCCP) and by the respiratory inhibitor KCN. Efflux of glucose from preloaded prosthecae was induced by PCMB and KCN, but not by S-13 or CCCP. Glucose uptake was not affected by arsenate or an inhibitor of membrane-bound adenosine triphosphatases, N, N'-dicyclohexylcarbodiimide. The lack of inhibition by these two compounds, combined with the extremely low levels of adenosine 5'-triphosphate present in prosthecae, indicates that adenosine 5'-triphosphate is not involved in the transport of glucose by prosthecae.  相似文献   

4.
The beta-methyl-galactoside- and galactose-specific transport systems of Escherichia coli were shown by experiments involving inhibitors and the use of an adenosine triphosphatase mutant strain to utilize adenosine 5'-triphosphate or a related compound to drive active transport. These systems were shown to be unable to use the activated-membrane state. The galactose-specific transport system was shown to behave most like a member of the binding-protein class of transport systems by its response to osmotic shock and vesicle formation. These results extended to two sugar transport systems: the correlation between the source of energy and class of transport system found by Berger (1973) for amino acid transport systems. That is, binding-protein systems utilized adenosine 5'-triphosphate whereas membrane-bound systems utilized the activated-membrane state to drive active transport.  相似文献   

5.
Transport of vitamin B12 in Escherichia coli: energy dependence.   总被引:9,自引:9,他引:0       下载免费PDF全文
This paper presents some evidence that the osmotic shock-sensitive, energy-dependent transfer of vitamin B12 from outer membrane receptor sites into the interior of cells of Escherichia coli requires an energized inner membrane, without obligatory intermediation of adenosine 5'-triphosphate (ATP). The experiments measured the effects of glucose, D-lactate, anaerobiosis, arsenate, cyanide, and 2,4-dinitrophenol upon the rates of B12 transport by starved cells of E. coli KBT001, which possesses a functional Ca2+, Mg2+-stimulated adenosine triphosphatase (Ca,MgATPase), and of E. coli AN120, which lacks this enzyme. Both strains were able to utilize glucose and D-lactate aerobically to potentiate B12 transport, indicating that the Ca,MgATPase was not essential for this process. When respiratory electron transport was blocked, either by cyanide or by anaerobic conditions, and the primary source of energy for the cells was presumably ATP from glucose fermentation, the rate of B12 transport was much reduced in E. coli AN120 but not in E.coli KBT001. These results support the view that the CaMgATPase can play a role in B12 transport but only when the energy for this process must be derived from ATP. The results of experiments with arsenate also supported the conclusion that the generation of phosphate bond energy was not absolutely required for B12 transport.  相似文献   

6.
Energetics of glycylglycine transport in Escherichia coli   总被引:16,自引:13,他引:3       下载免费PDF全文
The transport system for glycylglycine in Escherichia coli behaves like a shock-sensitive transport system. The initial rate of transport is reduced 85% by subjecting whole cells to osmotic shock, and glycylglycine is not transported by membrane vesicles. The energetics of transport was studied with strain ML 308-225 and its mutant DL-54, which is deficient in Ca(2+)- and Mg(2+)-stimulated adenosine 5'-triphosphatase (EC 3.6.1.3) activity. It is concluded that active transport of glycylglycine, like other shock-sensitive transport systems, has an obligatory requirement for phosphate bond energy, but not for respiration or the energized state of the membrane. The major evidence for this conclusion is as follows. (i) Uptake of glycylglycine is severely inhibited by arsenate. (ii) Oxidizable energy sources such as d-lactate, succinate, and ascorbate, which is mediated by N-methylphenazinium methylsulfate, cannot serve as energy sources for the transport of glycylglycine in DL-54, which lacks oxidative phosphorylation. (iii) When energy is supplied only from adenosine-5'-triphosphate produced by glycolysis (anaerobic transport assays with glucose as the energy source in DL-54), substantial uptake of glycylglycine is observed. (iv) When the Ca(2+)-Mg(2+)-adenosine triphosphatase activity is absent but substrate-level phosphorylations and electron transport are operating (glucose as the energy source in DL-54), transport of glycylglycine shows significant resistance to the uncouplers, dinitrophenol and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone.  相似文献   

7.
Branched-chain amino acid transport in Streptococcus agalactiae.   总被引:7,自引:3,他引:4       下载免费PDF全文
The transport of the branched-chain amino acids in Streptococcus agalactiae was characterized. Glucose-grown cells were able to utilize only glucose as an energy source for transport of L-leucine, whereas lactose-grown cells could utilize both glucose and lactose. It was determined from metabolic inhibitor studies that energy from glycolysis and substrate level phosphorylation was required for active transport. Energy was found to be coupled to transport by the action of adenosine triphosphatase and the generation of a proton motive force. The branched-chain amino acids were found to share a common transport system that may consist of multiple components.  相似文献   

8.
The transport of the branched-chain amino acids in Streptococcus agalactiae was characterized. Glucose-grown cells were able to utilize only glucose as an energy source for transport of L-leucine, whereas lactose-grown cells could utilize both glucose and lactose. It was determined from metabolic inhibitor studies that energy from glycolysis and substrate level phosphorylation was required for active transport. Energy was found to be coupled to transport by the action of adenosine triphosphatase and the generation of a proton motive force. The branched-chain amino acids were found to share a common transport system that may consist of multiple components.  相似文献   

9.
Energy coupling for methionine transport in Escherichia coli.   总被引:9,自引:9,他引:0       下载免费PDF全文
The source of metabolic energy for the accumulation of methionine in cells of Escherichia coli was shown to differ from that for proline uptake. In contrast to proline uptake, methionine accumulation was sensitive to arsenate, and relatively resistant to azide or dinitrophenol. Adenosine triphosphatase mutant strains also differentiated between the two systems, consistent with the conclusion that, although proline uptake is driven directly by the energized membrane state, methionine uptake is not. Methionine transport is similar to that of other osmotic shock-sensitive systems in its direct utilization of adenosine 5'-triphosphate or a related compound as energy source.  相似文献   

10.
Uncouplers and inhibitors of electron transport affected growth and electron transport of rumen bacteria in various ways. Selenomonas ruminantium was not affected by inhibitor and uncoupler concentrations which affected growth and electron transport of Bacteroides ruminicola, B. succinogenes, and Butyrivibrio fibrisolvens. Inhibitors, when active, led to accumulation of reduced electron carriers before the site of action, but differences were found among organisms in the site of action of these inhibitors. Uncouplers reduced the glucose molar growth yields (Ygluc) of B. ruminicola, B. succinogenes, and B. fibrisolvens compared with those obtained without uncouplers. The extent of Ygluc reduction accompanying inhibitor exposure reflected electron transport chain structure. S. ruminantium appeared to obtain its adenosine 5'-triphosphate from substrate-level processes only. The other organisms studied appeared to obtain adenosine 5'-triphosphate both from substrate-level processes and from electron transport but differed in the amount of adenosine 5'-triphosphate obtained from glucose catabolism and in the proportions of adenosine 5'-triphosphate obtained from substrate-level reactions and electron transport.  相似文献   

11.
The catecholamine transporter from bovine chromaffin granules has been solubilized by using low concentrations of sodium cholate in the presence of phospholipids. The functional solubilized protein has been incorporated into liposomes after removal of the detergent either by gel filtration or by dialysis. Reserpine-sensitive accumulation against a concentration gradient is achieved by artifically imposing a pH gradient across the membrane. In the reconstituted system adenosine 5'-triphosphate (ATP) serves as an energy source only at higher detergent concentrations. The proton-translocating adenosine triphosphatase (ATPase) is solubilized in parallel with the increasing efficiency of ATP as an energy source. Several criteria are proposed to distinguish between carrier-mediated (reserpine sensitive) and unmediated transport in the reconstituted system. The reserpine-sensitive process shows affinity and ss presented in this communication provide further support for the contention that concentrative uptake in biogenic amine storage vesicles is driven by a transmembrane pH gradient, which, in the native system, is generated by a proton-translocating ATPase. Moreover, the assays described provide a tool for the isolation and purification of the transport protein.  相似文献   

12.
In rat liver mitochondria suspended in KCl medium and containing a low concentration of a K(+)-specific cationophore (valinomycin or Triton X-100), oligomycin was shown to induce uncoupling of oxidative phosphorylation, stimulation of adenosine triphosphatase activity, release of the respiratory control, decrease of energy-dependent changes in the fluorescence of the dye 8-anilino-1-naphthalenesulphonic acid and rapid swelling of mitochondria. Oligomycin caused none of the above effects when Br(-) or NO(3) (-) was substituted for Cl(-) as the major anionic species or when Na(+) replaced the K(+). The same concentration of oligomycin that caused uncoupling and swelling slightly improved energy-conserving reactions when the cationophores were omitted. In the presence of KSCN, valinomycin or Triton X-100 by itself caused uncoupling and swelling which was not further enhanced by oligomycin. On the basis of the above results it is suggested that the energy dissipation resulting from the concerted action of the cationophores and oligomycin is connected with the simultaneous transport of K(+) and its counter ion and that oligomycin plays its role in the uncoupling by facilitating the permeation of Cl(-) through the cristae membrane of the mitochondria.  相似文献   

13.
The nature of the energy requirement for irreversible adsorption of phages T1 and phi80 was studied by using various specific energy inhibitors and mutants lacking either the Ca2+, Mg2+-adenosine triphosphatase or the ability to produce cytochromes in the absence of added 5-aminolaevulinic acid. It was found that irreversible adsorption could be energized both through the electron transport chain and from adenosine 5'-triphosphate via the Ca2+, Mg2+-adenosine triphosphatase, indicating the involvement of the energized membrane state. These results and the discovery that phages T1 and phi80 adsorb reversibly to the isolated tonA gene product are discussed in terms of the possible involvement of functions expressed by the tonB gene region in irreversible adsorption and the relationship to iron transport.  相似文献   

14.
Growth of Halobacterium halobium under illumination with limiting aeration induces bacteriorhodopsin formation and renders the cells capable of photophosphorylation. Cells depleted of endogenous reserves by a starvation treatment were used to investigate the means by which energy is coupled to the active transport of [14C]proline, -leucine, and -histidine. Proline was readily accumulated by irradiated cells under anaerobiosis even when the photophosphorylation was abolished by the adenosine triphosphatase inhibitor N,N'-dicyclohexylcarbodimiide (DCCD). The uptake of proline in the dark was limited except when the cells were allowed to accumulate adenosine 5'-triphosphate (ATP) by prior light exposure or by the oxidation of glycerol. DCCD inhibited this dark uptake. These findings essentially support Mitchell's chemiosmotic theory of active transport. The driving force is apparently the proton-motive force developed when protons are extruded from irradiated bacteriorhodopsin or by the dydrolysis of ATP by membrane adenosine triphosphatase. Carbonylcyanide m-chlorophenylhydrazone (CCCP), a proton permeant known to abolish membrane potential, was a strong inhibitor of proline uptake. Leucine transport was also apparently driven by proton-motive force, although its kinetic properties differed from the proline system. Histidine transport is apparently not a chemiosmotic system. Dark- or light-exposed cells show comparable initial rats of histidine uptake, and these processes were only partially inhibited by DCCD or CCCP. The histidine system apparently does not utilize ATP per se since comparable rates of uptake were exhibited by cells of differing intracellular ATP levels. Irradiated cells did effect a greater total accumulation of histidine than dark-exposed cells. These findings suggest that ATP is needed for sustained transport.  相似文献   

15.
1. The mechanism of the inhibition of Na(+)-plus-K(+)-activated adenosine triphosphatase by calcium was investigated with an enzyme preparation from rabbit kidney cortex and with membranes of human erythrocytes. 2. CaATP, rather than ionic Ca(2+), acts as a competitive inhibitor, competing with MgATP in the Na(+)-plus-K(+)-activated adenosine-triphosphatase reaction. 3. There appears to be no competition between calcium and Na(+) for the activation of adenosine triphosphatase. 4. The inhibition of Na(+)-plus-K(+)-activated adenosine triphosphatase of cell membranes by low concentrations of CaATP and the consequent need of intact cells to keep the cytoplasmic concentration of calcium low relative to that of magnesium suggests a raison d'être for the mitochondrial calcium pump.  相似文献   

16.
The transport of l-methionine by the gram-positive species Brevibacterium linens CNRZ 918 is described. The one transport system (K(m) = 55 muM) found is constitutive for l-methionine, stereospecific, and pH and temperature dependent. Entry of l-methionine into cells is controlled by the internal methionine pool. Competition studies indicate that l-methionine and alpha-aminobutyric acid share a common carrier for their transport. Neither methionine derivatives substituted on the amino or carboxyl groups nor d-methionine was an inhibitor, whereas powerful inhibition was shown by l-cysteine, s-methyl-l-cysteine, dl-selenomethionine and dl-homocysteine. Sodium plays important and varied roles in l-methionine transport by B. linens CNRZ 918: (i) it stimulates transport without affecting the K(m), (ii) it increases the specific activity (on a biomass basis) of the l-methionine transport system when present with methionine in the medium, suggesting a coinduction mechanism. l-Methionine transport requires an exogenous energy source, which may be succinic, lactic, acetic, or pyruvic acid but not glucose or sucrose. The fact that l-methionine transport was stimulated by potassium arsenate and to a lesser extent by potassium fluoride suggests that high-energy phosphorylated intermediates are not involved in the process. Monensin eliminates stimulation by sodium. Gramicidin and carbonyl cyanide-m-chlorophenylhydrazone act in the presence or absence of Na. N-Ethylmaleimide, p-chloromercurobenzoate, valinomycin, sodium azide, and potassium cyanide have no or only a partial inhibitory effect. These results tend to indicate that the proton motive force reinforced by the Na gradient is involved in the mechanism of energy coupling of l-methionine transport by B. linens CNRZ 918. Thus, this transport is partially similar to the well-described systems in gram-negative bacteria, except for the role of sodium, which is very effective in B. linens, a species adapted to the high sodium levels of its niche.  相似文献   

17.
A mutant of Escherichia coli has been isolated that grows poorly on succinate and exhibits a markedly reduced sensitivity to colicin K. This mutant is also deficient in the respiration-linked transport of proline and thiomethyl-beta-D-galactoside but appears normal for the adenosine triphosphate-dependent transport of glutamine and arginine. A temperature-conditional revertant of the mutant grows on succinate and is sensitive to colicin K at 27 C, but fails to grow on succinate and is insensitive to colicin K at 42 C. Proline transport in the temperature-conditional revertant is reduced at 42 C when either glucose or succinate is used as energy source. Glutamine transport, on the other hand, is normal at 42 C with glucose as energy source, but is reduced with succinate, although not to the same extent as is proline transport. The lack of growth on succinate and the deficiencies in transport at 42 C are not due to a temperature-dependent lesion in either the electron transport chain or in Ca2+, Mg2+-activated adenosine triphosphatase activity. Membrane vesicles prepared from the temperature-conditional revertant are impaired in proline transport at both 27 and 42 C. These findings suggest the existence in the cytoplasmic membrane of E. coli cells of a component, presumably protein, that is required for colicin K action and that functions in respiration-linked and, to a lesser degree, in adenosine triphosphate-dependent active transport systems. This protein may serve as the primary target of colicin K action.  相似文献   

18.
Hydrogenase and the adenosine 5'-triphosphate (ATP) synthetase complex, two enzymes essential in ATP generation in Methanobacterium thermoautotrophicum, were localized in internal membrane systems as shown by cytochemical techniques. Membrane vesicles from this organism possessed hydrogenase and adenosine triphosphatase (ATPase) activity and synthesized ATP driven by hydrogen oxidation or a potassium gradient. ATP synthesis depended on anaerobic conditions and could be inhibited in membrane vesicles by uncouplers, nigericin, or the ATPase inhibitor N,N'-dicyclohexylcarbodiimide. The presence of an adenosine 5'-diphosphate-ATP translocase was postulated. With fluorescent dyes, a membrane potential and pH gradient were demonstrated.  相似文献   

19.
Lactobacillus salivarius cells contain an inducible transport system for folate. Influx via this system is time- and temperature-dependent, requires glucose and glutamine for optimum activity, and is half-maximal at folate concentrations in the nanomolar range. The folate internalized after 30 min at 30 degrees C is not released from the cells by excess extracellular folate and is recovered in cell extracts primarily in metabolized forms. A membrane-associated folate-binding protein is also present in cells that have been induced to transport folate. This binding protein constitutes 1% of total cellular protein, exhibits a high affinity for folate (KD = 0.40 nM), and requires divalent cations for optimum binding activity. Folate binds rapidly to this protein, while the exchange of bound substrate with folate added subsequently is relatively slow and dependent on the metabolic state of the cell. The transport rate per binding site is 0.05/min at 30 degrees C. A comparison of substrate specificity showed that folate binding and transport are both inhibited to the same extent by several different folate compounds, and a parallel irreversible inhibition of both processes is observed by prior treatment of the cells with a carbodiimide-activated derivative of folic acid. Binding protein labeled covalently with [3H]folate and solubilized with Triton X-100 was purified by a fractionation procedure involving absorption and elution from microgranular silica and molecular sieve chromatography. The isolated protein appeared homogeneous by gel electrophoresis and had an apparent molecular weight of 21,000. Monoclonal antibodies to the folate transport protein of Lactobacillus casei showed a high degree of cross-reactivity to the isolated binding protein from L. salivarius, indicating that these proteins share common epitopes. These results suggest that folate uptake by L. salivarius proceeds via an abundant membrane-associated binding protein which facilitates the movement of folate across the membrane as an electroneutral complex with cations. The substrate then slowly dissociates from internalized binding sites and is metabolized sequentially to coenzyme forms and then to membrane-impermeable folylpolyglutamates.  相似文献   

20.
Glucose uptake and phosphorylation in Pseudomonas fluorescens   总被引:5,自引:3,他引:2       下载免费PDF全文
Pseudomonas fluorescens ATCC 13525 and a particulate glucose oxidase (d-glucose:oxygen oxidoreductase, EC 1.1.3.4) mutant of this organism, gox-7, were examined to determine if glucose oxidation via particulate glucose oxidase is a required first step for glucose uptake. Initial [(14)C]glucose-uptake rates in parent and gox-7 cells were qualitatively similar. Initial [(14)C]glucose-uptake product analysis revealed that glucose was accumulated via active transport and was rapidly metabolized to glucose-6-phosphate and gluconate-6-phosphate in both parent and gox-7 cells. Cell extracts contained soluble adenosine 5'-triphosphate specific kinase activity for phosphorylation of glucose. Glucose uptake was induced by glucose and not gluconate, thus, establishing independent regulation of glucose transport and glucose catabolism in p. fluorescens. The results prove that glucose oxidase was not an obligatory reaction for glucose carbon permeation in P. fluorescens. A general unifying scheme for glucose utilization in the aerobic fluorescent pseudomonads is suggested for the purpose of clarifying glucose uptake in these bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号