首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The apparent half life for metabolic turnover of glycerophospholipids in the myelin sheath, as determined by measuring the rate of loss of label in a myelin glycerophospholipid following radioactive precursor injection, varies with the radioactive precursor used, age of animal, and time after injection during which metabolic turnover is studied. Experimental strategies for resolving apparent inconsistencies consequent to these variables are discussed. Illustrative data concerning turnover of phosphatidylcholine (PC) in myelin of rat brain are presented. PC of the myelin membrane exhibits heterogeneity with respect to metabolic turnover rates. There are at least two metabolic pools of PC in myelin, one with a half life of the order of days, and another with a half life of the order of weeks. To a significant extent biphasic turnover is due to differential turnover of individual molecular species (which differ in acyl chain composition). The two predominant molecular species of myelin PC turnover at very different rates (16:0, 18:1 PC turning over several times more rapidly than 18:0, 18:1 PC). Therefore, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Possible mechanisms for differential turnover of molecular species are discussed, as are other factors that may contribute to a multiphasic turnover of glycerophospholipids.Special issue dedicated to Dr. Marjorie Lees.  相似文献   

2.
We studied markers of myelin content and of the rate of myelination in brains of mice between 8 and 20 weeks of age. During the 12-week time-course, control animals showed slight increases in the content of oligodendroglial-specific cerebroside, as well as cholesterol (enriched in, but not specific to, myelin). In contrast, synthesis of these lipids, as assayed by in vivo incorporation of (3)H(2)O, was substantial, indicating turnover of 0.4% and 0.7% of total brain cerebroside and cholesterol, respectively, each day. We also studied mice exposed to a diet containing 0.2% of the copper chelator, cuprizone. After 6 weeks 20%, and by 12 weeks, over 30% of brain cerebroside was gone. Demyelination was accompanied by down-regulation of mRNA expression for enzymes controlling myelin lipid synthesis (ceramide galactosyl transferase for cerebroside; hydroxymethylglutaryl-CoA reductase for cholesterol), and for myelin basic protein. Synthesis of myelin lipids was also greatly depressed. The 20% cerebroside deficit consequent to 6 weeks of cuprizone exposure was restored 6 weeks after return to a control diet. During remyelination, expression of myelin-related mRNA species, as well as cerebroside and cholesterol synthesis were restored to normal. However, in contrast to the steady state metabolic turnover in the control situation, all the cerebroside and cholesterol made were accumulated. To the extent that accumulating cerebroside is targeted for eventual inclusion in myelin (discussed) the rate of its synthesis is proportional to remyelination. With our assay, in vivo rates of cerebroside synthesis can be determined for a time window of the order of hours. This offers greater temporal resolution and accuracy relative to classical methods assaying accumulation of myelin components at time intervals of several days. We propose this experimental design, and the reproducible cuprizone model, as appropriate for studies of how to promote remyelination.  相似文献   

3.
The synthesis and turnover of cerebrosides and phospholipids was followed in microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of [U-14C]serine. The kinetics of incorporation of radioactivity into microsomal and myelin cerebrosides indicate the possibility of a precursor-product relationship between cerebrosides of these membranes. The specific radioactivity of myelin cerebrosides was corrected for the deposition of newly formed cerebrosides in myelin. Multiphasic curves were obtained for the decline in specific radioactivity of myelin and microsomal cerebrosides, suggesting different cerebroside pools in these membranes. The half-life of the fast turning-over pool of cerebrosides of myelin was 7 and 22 days for the developing and adult rat brain respectively. The half-life of the slowly turning-over pool of myelin cerebrosides was about 145 days for both groups of animals. The half-life of the rapidly turning-over microsomal cerebrosides was calculated to be 20 and 40 h for the developing and adult animals respectively. The half-life of the intermediate and slowly turning-over microsomal cerebrosides was 11 and 60 days respectively, for both groups of animals. The amount of incorporation of radioactivity into microsomal cerebrosides from L-serine was greatly decreased in the adult animals, and greater amounts of the precursor were directed towards the synthesis of phosphatidylserine. In the developing animals, considerable amounts of cerebrosides were synthesized from L-serine, besides phosphatidylserine. The time-course of incorporation indicated that a precursor-product relationship exists between microsomal and myelin phosphatidylserine. The half-life of microsomal phosphatidylserine was calculated to be about 8 h for the fast turning-over pool in both groups of animals.  相似文献   

4.
Myelination, during both normal development and with respect to disorders of myelination, is commonly studied by morphological and/or biochemical techniques that assay as their end-points the extent of myelination. The rate of myelination is potentially a more useful parameter, but it is difficult and time-consuming to establish, requiring a complete developmental study with labor-intensive methodology. We report herein development of methodology to assay the absolute rate of myelination at any desired time during development. This involves intraperitoneal injection of (3)H(2)O to label body water pools, followed by determination of label in the myelin-specific lipid, cerebroside. The absolute amount of cerebroside synthesized can then be calculated from the specific radioactivity of body water and knowledge of the number of hydrogens from water incorporated into cerebroside. During development, the rate of cerebroside synthesis correlated well with the rate of accumulation of the myelin-specific components, myelin basic protein and cerebroside. For purposes of control, we also tested other putative, albeit less quantitative, indices of the rate of myelination. Levels of mRNA for ceramide galactosyltransferase (rate-limiting enzyme in cerebroside synthesis) and for myelin basic protein did not closely correlate with myelination at all times. Cholesterol synthesis closely matched the rate of cholesterol accumulation but did not track well with myelination. Synthesis of fatty acids did not correlate well with accumulation of either fatty acids (phospholipids) or myelin markers. We conclude that measurement of cerebroside synthesis rates provides a good measure of the rate of myelination. This approach may be useful as an additional parameter for examining the effects of environmental or genetic alterations on the rate of myelination.  相似文献   

5.
The turnover of cerebroside sulfate (sulfatide) was followed in both microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of Na(2)(35)SO(4). In the adult rats, the specific radioactivity of sulfatide of the microsomal fraction reached a maximum 12 hr after the injection, and after 3 days it was reduced to less than 30% of the maximum. In contrast, the specific radioactivity of the myelin sulfatide did not reach a peak until 3 days after the injection and remained essentially at the same level for as long as 6 months. In the case of 17-day-old rats, the specific radioactivity of myelin sulfatide reached a maximum level around 12 hr after the injection and then appeared to decline. The decline was most marked 2-6 days after the injection, suggesting an apparently rapid turnover of myelin sulfatide. When a correction was made for deposition of newly formed sulfatide, the results indicated that the turnover of myelin in the developing animals was also relatively slow. In vitro experiments with purified myelin and 3'-phosphoadenosine-5'-[(35)S]phosphosulfate showed that myelin does not catalyze the galactocerebroside sulfotransferase reaction. This enzyme was found mainly in the microsomal fraction. In vivo studies suggested that a transfer of sulfatide molecules from the endoplasmic reticulum to myelin might occur. In order to obtain direct evidence for such a transfer, rat brain slices after pulse labeling with Na(2)(35)SO(4) were washed free of the isotope and reincubated with nonlabeled Na(2)SO(4). The specific radioactivity of the microsomal sulfatide declined, with a concomitant rise in the specific radioactivity of the myelin sulfatide. These observations are therefore consistent with the postulate that myelin sulfatide is probably synthesized in the endoplasmic reticulum.  相似文献   

6.
Effects of Monensin and Colchicine on Myelin Galactolipids   总被引:4,自引:4,他引:0  
Monensin and colchicine have been used in a variety of systems to disrupt functioning of the Golgi apparatus and transport of Golgi-derived vesicles to the plasma membrane. In this study the effects of monensin and colchicine on the synthesis of cerebroside and sulfatide and their appearance in myelin were examined to determine whether these myelin components are processed through the Golgi apparatus. Brain slices from rats 17 days old were incubated with [3H]galactose and [35S]-sulfate to label cerebroside and sulfatide. Myelin was isolated on sucrose density gradients. Fractions highly enriched in cerebroside and sulfatide were prepared from homogenates and myelin fractions by lipid extraction, alkaline methanolysis, and in some cases TLC. Monensin at 0.1 microM had no significant effect on synthesis of these galactolipids as measured by incorporation of [3H]-galactose into cerebroside or [35S]sulfate into sulfatide in homogenates. However, appearance of [35S]sulfatide in the myelin fraction was reduced to 49% of control, while appearance of [3H]cerebroside was not significantly reduced. Colchicine from 1 mM to 0.1 microM had effects similar to monensin, that is, appearance of [35S]sulfatide in myelin was depressed, but again [3H]cerebroside was not affected. Incorporation of [35S]sulfate into sulfatide in homogenate was 93% of control, while appearance of [35S]sulfatide in the myelin fraction was depressed to 58% of control. The inhibition of appearance of sulfatide in myelin by colchicine and monensin is consistent with the view that sulfation of cerebroside occurs in the Golgi and that sulfatide is transported via Golgi-derived vesicles to the forming myelin membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Inorganic [(32)P]phosphate, [U-(14)C]glycerol and [2-(14)C]ethanolamine were injected into the lateral ventricles in the brains of adult rats, and the labelling of individual phospholipids was followed over 2-4 months in both a microsomal and a highly purified myelin fraction. 2. All the phospholipids in myelin became appreciably labelled, although initially the specific radioactivities of the microsomal phospholipids were somewhat higher. Eventually the specific radioactivities in microsomal and myelin phospholipids fell rapidly at a rate corresponding to the decline of radioactivity in the acid-soluble pools. 3. Equivalent experiments carried out in developing rats with [(32)P]phosphate administered at the start of myelination showed some persistence of phospholipid labelling in the myelin, but this could partly be attributed to the greater retention of (32)P in the acid-soluble phosphorus pool and recycling. 4. It is concluded that a substantial part of the phospholipid molecules in adult myelin membranes is readily exchangeable, although a small pool of slowly exchangeable material also exists. 5. A slow incorporation into or loss of labelled precursor from myelin phospholipids does not necessarily give a good indication of the rate of renewal of the molecules in the membrane. As presumably such labelled molecules originate by exchange with those in another membrane site (not necessarily where synthesis occurs) it is only possible to calculate the turnover rate in the myelin membrane if the behaviour of the specific radioactivity with time of the phospholipid molecules in the immediate precursor pool is known.  相似文献   

8.
The role of myelin-associated neuraminidase in ganglioside metabolism was examined using rats of ages ranging from 17 to 97 days. The neuraminidase activity directed toward the ganglioside GM3 in the total myelin fraction was high during the period of active myelination and, thereafter, decreased rapidly to the adult level. The ganglioside composition became simpler during development with an increasing amount of GM1 and decreasing percentages of di- and polysialogangliosides. The decrease in the proportion of GD1a was most prominent, whereas relative amounts of GD1b and GT1b increased transiently before reducing to the adult levels. The heavy myelin subfraction contained higher percentages of di- and polysialo-species compared to the light myelin fraction at young and adult ages. The in vitro incubation of myelin of young rats under an optimal condition for neuraminidase action produced a profile of ganglioside changes similar to that observed in in vivo development. These results strongly suggest that myelin-associated neuraminidase may play a pivotal role in the developmental changes in the ganglioside composition of rat brain myelin.  相似文献   

9.
Soluble gangliosides in cultured neurotumor cells   总被引:3,自引:3,他引:0  
Abstract: The biosynthesis and degradation of glycosphingolipids were studied in cytosolic and membrane fractions obtained from rat glioma C6 cells. Both pools had a similar composition of neutral glycosphingolipids but the soluble pool contained only a few percent of the total. The major ganglioside in C6 cells was GM3, of which only 2% was soluble. Whereas the bulk of the membrane GM3 was accessible to surface labeling procedures, the soluble GM3 was not. Mouse neuroblastoma N18 cells also contained small amounts of cytoplasmic gangliosides corresponding to GM3, GM2, GM1, and GDla. When C6 cells were incubated with medium containing [3H]galactose at 37°C, the specific activity of soluble GM3 initially increased more rapidly than that of membrane GM3; by 4 h, the specific activities in both pools became equal. Total incorporation into the membrane pool, however, was always several-fold greater even at the shortest incubation times examined. The labeling pattern of neutral glycosphingolipids in both soluble and membrane fractions indicated the existence of a precursor-product relationship between glucosylceramide and other glycosphingolipids. When labeled cells were transferred to nonradioactive medium, glucosylceramide disappeared the most rapidly, with a 50% loss within <6 h. The turnover rates of other glycosphingolipids were much slower. Although cytosolic GM3 was degraded more rapidly (t1/2= 26 h) than membrane-bound GM3 (t1/2= 44 h), its turnover rate was much slower than the time required for transport of GM3 to the cell surface (20–30 min). Our results are consistent with the existence of a small intracellular pool of soluble gangliosides and neutral glycosphingolipids that is stable and independent of the main membrane-bound pool. Although the role of these cytosolic glycolipids is unknown, they do not appear to represent a transport pool between the site of synthesis and the plasma membrane.  相似文献   

10.
Spinal cords from clinically affected newborn lambs, each with muscular spasms (‘shaking’) and a ‘hairy’ birth coat, were found to be deficient in DNA and to contain less myelin and various lipid components, suggesting retarded CNS development equivalent to about 124 days conceptual age. Cerebrosides were notably deficient in whole cord and isolated myelin and contained more saturated and less unsaturated fatty acids than normal. The rate of cerebroside synthesis assayed in vitro was enhanced and taken with the very low tissue concentrations this indicated faster cerebroside turnover and a less stable myelin in the spinal cords of lambs affected with Border Disease. Marked decreases in plasmalogen concentrations, the redistribution of phospholipid fractions, the presence of about 8 per cent cholesterol in the esterified form and the characteristic fatty acid composition of these esters strongly suggest that degeneration is concomitant with myelin immaturity. Hypocupraemia, low concentrations of copper in the cerebrum and increased concentrations in spinal cord myelin are additional features of the clinical disease. The latter result may be related to myelin immaturity.  相似文献   

11.
Abstract: The metamorphic changes in levels of glycolipids and myelin proteins and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) in the brains of bullfrog tadpoles, adult frogs, and axolotls were investigated, with particular emphasis on myelin maturation. The concentrations of cerebroside. sulfatide, and galactosyldiacylglycerol gradually increased from the onset of prometamorphosis throughout the active metamorphic period and then greatly increased after metamorphosis was completed. The ratio of glucocerebroside to galactocerebroside increased greatly in the prometamorphic period and then rapidly decreased to the frog level during the climax period. The fatty acid compositions of cerebroside and sulfatide showed a developmental change, with 24:1 being more predominant in the later metamorphic stage. The proportion of hydroxy fatty acids increased up to the onset of the prometamorphic stage and thereafter remained constant at ∼ 50% of the total. The CNP activity remained unchanged throughout metamorphosis at 60% that in frog myelin and increased in the adult frog. The composition of tadpole myelin proteins remained constant during metamorphosis, with large basic protein being the most abundant, and in the frog, proteolipid protein and large basic protein were present in comparable amounts. The two adult forms of axolotl, i.e., the neotenous and metamorphosed forms, exhibited almost identical myelin constituents, and CNP activity in the neotenous form amounted to one-fifth that in the bullfrog. These results indicate that active biosynthesis of myelin marker components occurs as metamorphosis proceeds, but more pronounced changes of myelin components occur after metamorphosis is completed.  相似文献   

12.
The lipid composition of the brain, including myelin, was studied in detail in two cases with a variant form of metachromatic leukodystrophy (multiple sulphatase deficiency type). In the white matter, the sulphatide concentration was 3-4 times higher than the normal level in both cases. There was a significant accumulation of cholesterol sulphate in the brain, liver and kidney of both cases. The ganglioside pattern in the grey and white matter was abnormal, with a higher proportion of GM3, GM2 and GD3-gangliosides. Non-lipid hexosamine contents were increased 1.5-2 times in brain, 8-10 times in liver and 2-3 times in kidney. Increased amounts of glucocerobroside, ceramide lactoside and ceramide trihexoside were present in grey and white matter of both cases. Recovery of purified myelin from two patients' brains was much less than from control (1-2% in case 1 and 20-30% in case 2). The lipid composition of myelin was almost normal except for a higher proportion of sulphatide, with a decreased amount of cerebroside. The fatty acid compositions of myelin sulphatide and sphingomyelin were almost normal, while non-hydroxy fatty acids of cerebroside contained less long-chain fatty acids, as characterized by a significant increase of C16:0 and C18:0 fatty acids. The myelin polypeptide pattern by SDS-disc gel electrophoresis showed a relative decrease of basic protein and of proteolipid protein. A possible mechanism of myelin loss in MSD is discussed.  相似文献   

13.
Turnover of myelin proteins in mouse brain in vivo.   总被引:9,自引:0,他引:9       下载免费PDF全文
The incorporation of tyrosine into proteins was measured after the subcutaneous implantation of a pellet of [14C]tyrosine in mice. This method keeps the specific radioactivity of free tyrosine fairly constant and makes it possible to follow incorporation up to a 10-day period. At the end of 10 days most of the protein-bound tyrosine was replaced (i.e. most protein turned over) in lung, liver, heart, kidney and spleen; about half was replaced in brain, one-quarter in muscle. The rate of protein turnover in myelin was approx. 40% of that of whole brain proteins; at 10 days one-fifth of the myelin proteins were replaced. All protein components of myelin measured were in a dynamic state; incorporation decreased in the following order, Wolfgram greater than DM-20 greater than basic greater than proteolipid proteins. The incorporation of tyrosine into each protein fraction was greater in the 0-5-day than in the 5-10-day period, indicating heterogeneity of metabolic rates. The results show that after myelination at least a portion of each protein component of myelin is undergoing significant metabolic turnover. In the adult, myelin components are not stable, but turnover is heterogeneous, and each protein may be compartmentalized. Turnover can be influenced by a variety of factors.  相似文献   

14.
The subcellular and submicrosomal distributions of four glycolipid-synthesizing transferases were studied in young rat brains. (1) Two galactosyl transferases involved in the synthesis of cerebrosides, the cerebroside sulphotransferase which catalyses the synthesis of sulphatides, and the glucosyl transferase which plays an important role in the ganglioside biosynthesis were localized essentially in the microsomal fraction. Only low activities were detected in the crude mitochondrial and synaptosome-enriched fractions. (2) A comparison of the activities of these enzymes in the crude myelin and two myelin subfractions showed that the galactosyl transferases and the cerebroside sulphotransferase had similar activities in the crude myelin and myelin-like fractions. A considerable galactosyl transferase activity was found in purified myelin. In this respect these two enzymes were different from cerebroside sulphotransferase, whose activity was much lower in purified myelin. On the other hand, glucosyl transferase had a relatively low specific activity in all three myelin fractions. Analysis of different markers showed that the activities were considerably higher than those expected from the maximum microsomal contamination calculated. (3) Subfractionation of the microsomes demonstrated that the galactosyl transferases were more concentrated in the lower parts of the gradient, containing vesicles with attached ribosomes. Cerebroside sulphotransferase and glucosyl transferase were found predominantly in the upper and intermediate parts of the gradient, which were composed essentially of smooth-surfaced vesicles and membrane fragments. Chemical analysis of submicrosomal fractions confirmed the morphological observations.  相似文献   

15.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

16.
Turnover of myelin and other structural proteins in the developing rat brain   总被引:13,自引:5,他引:8  
1. Protein metabolism of myelin and other subcellular components from developing rat brain was studied for periods from 5h to 210 days after intraperitoneal injection of [(3)H]lysine and [(14)C]glucose. 2. Half-lives for total brain proteins (t(0.5)) were 27 days after [(3)H]lysine and 4 days after [(14)C]glucose injection. 3. Factors accounting for the difference in the turnover rates obtained with different precursors, and the problem of reutilization of the label were investigated. 4. The catabolism of purified myelin proteins was studied and the half-lives of individual myelin proteins were calculated. 5. Myelin basic proteins turned over at two different rates. Half-life of the fast component of myelin basic proteins was 19-22 days and the slow component exhibited a high degree of metabolic stability. 6. Proteolipid protein underwent slow turnover. High-molecular-weight Wolfgram (1966) proteins underwent (relatively) fast metabolism (t(0.5) of 17-22 days).  相似文献   

17.
Turnover of brain mitochondrial membrane lipids   总被引:6,自引:4,他引:2       下载免费PDF全文
1. The turnover of lipids, of myelin and other brain subcellular particles has been studied in double-labelling experiments on intact rats. 2. Overall metabolism of brain mitochondrial lipids was three times slower than that of the liver. 3. Individual lipids of brain mitochondria and myelin were also separated and their metabolism was studied. 4. All myelin lipids examined undergo very slow turnover. Two pools of brain mitochondrial lipid were identified. The slowly metabolized lipids were cholesterol, cardiolipin plus phosphatidic acid and possibly sphingomyelin; the remaining phosphatides underwent more rapid turnover. 5. The possible significance of these results is discussed.  相似文献   

18.
Developmental changes in three enzymes associated with myelin lipids were studied in the shiverer mouse, a murine mutant showing a severe deficiency of CNS myelin. Age-related changes in cerebroside sulfotransferase (measured in brain) and arylsulfatase A and cerebroside B-galactosidase (measured in brain and liver) were the same for shiverer and control mice. The shiverer mouse, therefore, demonstrates a dissociation between the genetic mechanisms regulating myelination in the CNS and developmental changes in enzyme activities thought to be closely related to the synthesis of myelin. In addition, we found no defect in the shiverer mouse in the incorporation of glycine-labeled basic protein into CNS myelin, indicating an important metabolic difference between the morphologically similar shiverer and quaking mutants.  相似文献   

19.
An investigation on the effects of acute (10 mg/kg) and chronic (10 mg/kg for 15 days) treatment with Δ9-THC administration by the intraperitoneal route, on the cholesterol, cerebroside and individual phospholipid contents in microsomal, synaptosomal, mitochodrial and myelin fractions from adult rat brain, is reported. The drug has been found to affect the different subcellular membranous lipid and phospholipid components in a characteristic manner.  相似文献   

20.
These studies investigated the role of gangliosides in governing the steady-state concentration and turnover of unesterified cholesterol in normal tissues and in those of mice carrying the NPC1 mutation. In animals lacking either GM2/GD2 or GM3 synthase, tissue cholesterol concentrations and synthesis rates were normal in nearly all organs, and whole-animal sterol pools and turnover also were not different from control animals. Mice lacking both synthases, however, had small elevations in cholesterol concentrations in several organs, and the whole-animal cholesterol pool was marginally elevated. None of these three groups, however, had changes in any parameter of cholesterol homeostasis in the major regions of the central nervous system. When either the GM2/GD2 or GM3 synthase activity was deleted in mice lacking NPC1 function, the clinical phenotype was not changed, but lifespan was shortened. However, the abnormal cholesterol accumulation seen in the tissues of the NPC1 mouse was unaffected by loss of either synthase, and clinical and molecular markers of hepatic and cerebellar disease also were unchanged. These studies demonstrate that hydrophobic interactions between cholesterol and various gangliosides do not play an important role in determining cellular cholesterol concentrations in the normal animal or in the mouse with the NPC1 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号